Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Seismically Induced Column Buckling In Special Concentrically Braced Frames In Steel Buildings, Noah Meisner Apr 2023

Seismically Induced Column Buckling In Special Concentrically Braced Frames In Steel Buildings, Noah Meisner

Master's Theses (2009 -)

Special concentrically braced frames (SCBFs) are efficient lateral-force-resisting systems that are specifically detailed for steel buildings in regions with high seismic hazard. Current design standards for SCBFs intend to ensure inelastic deformation capacity through strict ductile and capacity-based design requirements. Braces are intended to yield in tension and buckle in compression to dissipate seismic energy. The current standards apply expected brace forces to all framing elements and connections to concentrate yielding in the braces. In these standards it is conservatively assumed that brace yielding and buckling simultaneously occur on all stories, and columns are designed considering the accumulated brace demands …


Development Of Battery Materials To Function As Corrosion Protection On Car Body Plates, Tubagus Noor Rohmannudin, Sulistijono Sulistijono, Noval Adrinanda, Faridz Wira Dharma, Samuel Areliano Jan 2023

Development Of Battery Materials To Function As Corrosion Protection On Car Body Plates, Tubagus Noor Rohmannudin, Sulistijono Sulistijono, Noval Adrinanda, Faridz Wira Dharma, Samuel Areliano

Journal of Materials Exploration and Findings

Most car bodies made for mass production are made from steel or aluminum. Both are strong metals, but steel is cheaper than aluminum and is more commonly used in lower-end cars for a broader consumer range. The weakness of steel compared to aluminum is that it is susceptible to corrosion under certain conditions, and thus it may deteriorate over time without proper care. To prevent corrosion, modern cars are coated with paint to prevent direct contact with the environment. As a second line of protection, a car battery can be connected to the body to create an impressed current cathodic …


Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang Jan 2023

Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This research reports a distributed fiber optic high-temperature sensing system tailored for applications in the steel industry and various other sectors. Recent advancements in optical sensor technology have led to the exploration of sapphire crystal fibers as a solution for sensing in harsh environments. Utilizing a femtosecond (fs) laser, cascaded fiber Bragg gratings (FBGs) were meticulously fabricated within a multimode sapphire optical fiber. These FBGs endowed the system with distributed sensing capabilities and underwent rigorous testing under extreme temperatures, reaching up to 1,800 °C. The study delves into the investigation of the FBG reflection spectrum, facilitated by the development of …


Real-Time Air Gap And Thickness Measurement Of Continuous Caster Mold Flux By Extrinsic Fabry-Perot Interferometer, Abhishek Prakash Hungund, Hanok Tekle, Bohong Zhang, Ronald J. O'Malley, Jeffrey D. Smith, Rex E. Gerald, Jie Huang Jan 2023

Real-Time Air Gap And Thickness Measurement Of Continuous Caster Mold Flux By Extrinsic Fabry-Perot Interferometer, Abhishek Prakash Hungund, Hanok Tekle, Bohong Zhang, Ronald J. O'Malley, Jeffrey D. Smith, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

Mold Flux plays a critical role in continuous casting of steel. Along with many other functions, the mold flux in the gap between the solidifying steel shell and the mold serves as a medium for controlling heat transfer and as a barrier to prevent shell sticking to the mold. This manuscript introduces a novel method of monitoring the structural features of a mold flux film in real-time in a simulated mold gap. A 3-part stainless-steel mold was designed with a 2 mm, 4 mm and, 6 mm step profile to contain mold flux films of varying thickness. An Extrinsic Fabry-Perot …


In Situ And Real-Time Mold Flux Analysis Using A High-Temperature Fiber-Optic Raman Sensor For Steel Manufacturing Applications, Bohong Zhang, Hanok Tekle, Ronald J. O'Malley, Todd Sander, Jeffrey D. Smith, Rex E. Gerald, Jie Huang Jan 2023

In Situ And Real-Time Mold Flux Analysis Using A High-Temperature Fiber-Optic Raman Sensor For Steel Manufacturing Applications, Bohong Zhang, Hanok Tekle, Ronald J. O'Malley, Todd Sander, Jeffrey D. Smith, Rex E. Gerald, Jie Huang

Materials Science and Engineering Faculty Research & Creative Works

Continuous Casting in Steel Production Uses Specially Developed Oxyfluoride Glasses (Mold Fluxes) to Lubricate a Mold and Control the Solidification of the Steel in the Mold. the Composition of the Flux Impacts Properties, Including Basicity, Viscosity, and Crystallization Rate, All of Which Affect the Stability of the Casting Process and the Quality of the Solidified Steel. However, Mold Fluxes Interact with Steel during the Casting Process, Resulting in Flux Chemistry Changes that Must Be Considered in the Flux Design. Currently, the Chemical Composition of Mold Flux Must Be Determined by Extracting Flux Samples from the Mold during Casting and Then …