Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Cold Flow Performance Of A Ramjet Engine, Harrison G. Sykes Dec 2014

Cold Flow Performance Of A Ramjet Engine, Harrison G. Sykes

Master's Theses

The design process and construction of the initial modular ramjet attachment to the Cal Poly supersonic wind tunnel is presented. The design of a modular inlet, combustor, and nozzle are studied in depth with the intentions of testing in the modular ramjet. The efforts undertaken to characterize the Cal Poly supersonic wind tunnel and the individual component testing of this attachment are also discussed. The data gathered will be used as a base model for future expansion of the ramjet facility and eventual hot fire testing of the initial components. Modularity of the inlet, combustion chamber, and nozzle will allow …


Flight Testing Small Uavs For Aerodynamic Parameter Estimation, Adam Thomas Chase Jun 2014

Flight Testing Small Uavs For Aerodynamic Parameter Estimation, Adam Thomas Chase

Master's Theses

A flight data acquisition system was developed to aid unmanned vehicle designers in verifying the vehicle's design performance. The system is reconfigurable and allows the designer to choose the correct combination of complexity, risk, and cost for a given flight test. The designer can also reconfigure the system to meet packaging and integration requirements. System functionality, repeatbility, and accuracy was validated by collecting data during multiple flights of a radio-controlled aircraft. Future work includes sensor fusion, thrust prediction methods, stability and control derivative estimation, and growing Cal Poly's small-scale component aerodynamic database.


Investigation Into The Mitigation Of The Effects Of Uncertain Optical Degradation On An Interplanetary Solar Sail Mission Using A Single Model Update, Jordan Smiroldo Dec 2013

Investigation Into The Mitigation Of The Effects Of Uncertain Optical Degradation On An Interplanetary Solar Sail Mission Using A Single Model Update, Jordan Smiroldo

Master's Theses

The renewed academic interest in using solar sails as a source of spacecraft propulsion has been accompanied by a recent fervor of investigations into non-ideal and off-nominal sail performance considerations. One of the most influential considerations, uncertain optical degradation, has been shown to present significant trajectory design difficulties. This paper investigates the potential of using a mid-course degradation model update to mitigate the risk of missing the target destination in a sample 300 day Earth-Venus trajectory. Using a range of potential degradation profiles, it is shown that correcting in the first half of the mission is highly likely to result …


Static Balancing Of The Cal Poly Wind Turbine Rotor, Derek Simon Aug 2012

Static Balancing Of The Cal Poly Wind Turbine Rotor, Derek Simon

Master's Theses

The balancing of a wind turbine rotor is a crucial step affecting the machine’s performance, reliability, and safety, as it directly impacts the dynamic loads on the entire structure.

A rotor can be balanced either statically or dynamically. A method of rotor balancing was developed that achieves both the simplicity of static balancing and the accuracy of dynamic balancing. This method is best suited, but not limited, to hollow composite blades of any size. The method starts by quantifying the mass and center of gravity of each blade. A dynamic calculation is performed to determine the theoretical shaking force on …


Experimental And Numerical Investigations Of Tubular-Shaped Direct Methanol Fuel Cells (Dmfcs), Travis R. Ward Aug 2011

Experimental And Numerical Investigations Of Tubular-Shaped Direct Methanol Fuel Cells (Dmfcs), Travis R. Ward

Master's Theses

This study focuses on both the numerical and experimental investigations of the novel, passively operated, tubular-shaped, Direct Methanol Fuel Cell (DMFC) as an alternative geometry to the traditional planar-shaped fuel cell. The benefit of the tubular geometry compared to the planar geometry is the higher instantaneous volumetric power density provided by the larger active area, which could be beneficial in applications that require a high instantaneous power while occupying a small volume. First, a two-dimensional, two-phase, non-isothermal model was developed to investigate the steady-state performance and design characteristics of a tubular-shaped, passive DMFC. It was found that a higher ambient …