Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

High Performance Pure Sulfur Honeycomb-Like Architectures Synthesized By A Cooperative Self-Assembly Strategy For Lithium Sulfur Batteries, Xin Liang, Mohammad Kaiser, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Prof Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang Oct 2014

High Performance Pure Sulfur Honeycomb-Like Architectures Synthesized By A Cooperative Self-Assembly Strategy For Lithium Sulfur Batteries, Xin Liang, Mohammad Kaiser, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Prof Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang

Shi Xue Dou

Honeycomb-like pure sulfur architectures were synthesized by a cooperative self-assembly strategy, in which a soft template is used to form the porous structure. Their electrochemical performance is significantly improved comparing with the commercial sulfur powder and the as-prepared sulfur without honeycomb morphology. There has been no report on using a soft template to prepare honeycomb-like sulfur particles.


Thermoelectric Performance Of N-Type (Pbte)0.75(Pbs)0.15(Pbse)0.1 Composites, Sima Aminorroaya Yamini, Heng Wang, Dianta Ginting, David R. G Mitchell, S X. Dou, G. Jeffrey Snyder Oct 2014

Thermoelectric Performance Of N-Type (Pbte)0.75(Pbs)0.15(Pbse)0.1 Composites, Sima Aminorroaya Yamini, Heng Wang, Dianta Ginting, David R. G Mitchell, S X. Dou, G. Jeffrey Snyder

Shi Xue Dou

Lead chalcogenides (PbQ, Q = Te, Se, S) have proved to possess high thermoelectric efficiency for both n-type and p-type compounds. Recent success in tuning of electronic band structure, including manipulating the band gap, multiple bands, or introducing resonant states, has led to a significant improvement in the thermoelectric performance of p-type lead chalcogenides compared to the n-type ones. Here, the n-type quaternary composites of (PbTe)0.75(PbS)0.15(PbSe)0.1 are studied to evaluate the effects of nanostructuring on lattice thermal conductivity, carrier mobility, and effective mass variation. The results are compared with the similar ternary systems of (PbTe)1-x(PbSe)x, (PbSe) 1-x(PbS)x, and (PbS)1-x(PbTe)x. The …


Thermoelectric Performance Of Tellurium-Reduced Quaternary P-Type Lead-Chalcogenide Composites, Sima Aminorroaya Yamini, Heng Wang, Zachary M. Gibbs, Yanzhong Pei, David R. G Mitchell, S X. Dou, G. Jeffrey Snyder Oct 2014

Thermoelectric Performance Of Tellurium-Reduced Quaternary P-Type Lead-Chalcogenide Composites, Sima Aminorroaya Yamini, Heng Wang, Zachary M. Gibbs, Yanzhong Pei, David R. G Mitchell, S X. Dou, G. Jeffrey Snyder

Shi Xue Dou

A long-standing technological challenge to the widespread application of thermoelectric generators is obtaining high-performance thermoelectric materials from abundant elements. Intensive study on PbTe alloys has resulted in a high figure of merit for the single-phase ternary PbTe-PbSe system through band structure engineering, and the low thermal conductivity achieved due to nanostructuring leads to high thermoelectric performance for ternary PbTe-PbS compounds. Recently, the single-phase p-type quaternary PbTe-PbSe-PbS alloys have been shown to provide thermoelectric performance superior to the binary and ternary lead chalcogenides. This occurs via tuning of the band structure and from an extraordinary low thermal conductivity resulting from high-contrast …


High-Performance Sodium-Ion Batteries And Sodium-Ion Pseudocapacitors Based On Mos2/Graphene Composites, Yunxiao Wang, Shulei Chou, David Wexler, Hua-Kun Liu, S X. Dou Oct 2014

High-Performance Sodium-Ion Batteries And Sodium-Ion Pseudocapacitors Based On Mos2/Graphene Composites, Yunxiao Wang, Shulei Chou, David Wexler, Hua-Kun Liu, S X. Dou

Shi Xue Dou

Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d-spacing, a contribution of the graphene matrix, and the …


Ultra-High Performance, High-Temperature Superconducting Wires Via Cost-Effective, Scalable, Co-Evaporation Process, Ho-Sup Kim, Sang-Soo Oh, Hong-Soo Ha, Dojun Youm, Seung-Hyun Moon, Jung Ho Kim, S X. Dou, Yoon-Uk Heo, Sung-Hun Wee, Amit Goyal Oct 2014

Ultra-High Performance, High-Temperature Superconducting Wires Via Cost-Effective, Scalable, Co-Evaporation Process, Ho-Sup Kim, Sang-Soo Oh, Hong-Soo Ha, Dojun Youm, Seung-Hyun Moon, Jung Ho Kim, S X. Dou, Yoon-Uk Heo, Sung-Hun Wee, Amit Goyal

Shi Xue Dou

Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 μm thick SmBa2Cu3O7 − δ (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. …


A Facile Route To Synthesize Transition Metal Oxide/Reduced Graphene Oxide Composites And Their Lithium Storage Performance, Chongjun Zhao, Shulei Chou, Yunxiao Wang, Cuifeng Zhou, Hua-Kun Liu, S X. Dou Mar 2014

A Facile Route To Synthesize Transition Metal Oxide/Reduced Graphene Oxide Composites And Their Lithium Storage Performance, Chongjun Zhao, Shulei Chou, Yunxiao Wang, Cuifeng Zhou, Hua-Kun Liu, S X. Dou

Shi Xue Dou

Transition metal oxide (Mn3O4, Fe2O3, Co3O4, and ZnO) and reduced graphene oxide (RGO) composites were successfully synthesized via a hydrothermal method using the direct reaction between the corresponding metal powder and graphene oxide (GO). In this process, the GO can be reduced by transition metal powder in water, and the nanosized metal oxide can be obtained, and homogeneously mixed with and wrapped by RGO to form a metal oxide/RGO composite at the same time. X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning and transmission electron microscopy were used to characterize the as-prepared materials. The different experimental parameters, including reactants, …


Synergetic Combination Of Limd With Chpd For The Production Of Economical And High Performance Mgb2 Wires, Minoru Maeda, Md Shahriar Ai Hossain, Ashkan Motaman, Jung Ho Kim, Anna Kario, Matt Rindfleisch, Mike Tomsic, S X. Dou Mar 2014

Synergetic Combination Of Limd With Chpd For The Production Of Economical And High Performance Mgb2 Wires, Minoru Maeda, Md Shahriar Ai Hossain, Ashkan Motaman, Jung Ho Kim, Anna Kario, Matt Rindfleisch, Mike Tomsic, S X. Dou

Shi Xue Dou

We propose an economical fabrication concept, the localized internal magnesium diffusion (IMD) method. Instead of using a single magnesium (Mg) rod in the center of a metal sheath tube, we use large-sized Mg particles (20-50 mesh) mixed well with cheap 97% crystalline boron powder to fill the metal sheath tube. After a repeated drawing process, the coarse Mg is elongated along the core wire axis of the metal sheath tube. Textured MgB2 grains are then formed during the sintering process. In the localized IMD process, however, there is still a need to improve the overall density. In order to increase …


Facile Synthesis Of A Interleaved Expanded Graphite-Embedded Sulphur Nanocomposite As Cathode Of Li-S Batteries With Excellent Lithium Storage Performance, Yun-Xiao Wang, Ling Huang, Li-Chao Sun, Su-Yuan Xie, Gui-Liang Xu, Shu-Ru Chen, Yue-Feng Xu, Jun-Tiao Li, Shulei Chou, S. X. Dou, Shi-Gang Sun Jun 2013

Facile Synthesis Of A Interleaved Expanded Graphite-Embedded Sulphur Nanocomposite As Cathode Of Li-S Batteries With Excellent Lithium Storage Performance, Yun-Xiao Wang, Ling Huang, Li-Chao Sun, Su-Yuan Xie, Gui-Liang Xu, Shu-Ru Chen, Yue-Feng Xu, Jun-Tiao Li, Shulei Chou, S. X. Dou, Shi-Gang Sun

Shi Xue Dou

This paper reports the facile synthesis of a unique interleaved expanded graphite-embedded sulphur nanocomposite (S-EG) by melt-diffusion strategy. The SEM images of the S-EG materials indicate the nanocomposites consist of nanosheets with a layer-by-layer structure. Electrochemical tests reveal that the nanocomposite with a sulphur content of 60% (0.6S-EG) can deliver the highest discharge capacity of 1210.4 mAh g−1 at a charge–discharge rate of 280 mA g−1 in the first cycle, the discharge capacity of the 0.6S-EG remains as high as 957.9 mAh g−1 after 50 cycles of charge–discharge. Furthermore, at a much higher charge–discharge rate of 28 A g−1, the …


The Comparison Between Nanostructure Control And Other Modifications To Improve The Electrochemical Performance Of Sno, Yong-Mook Kang, Min-Sik Park, Hua-Kun Liu, S. X. Dou Jun 2013

The Comparison Between Nanostructure Control And Other Modifications To Improve The Electrochemical Performance Of Sno, Yong-Mook Kang, Min-Sik Park, Hua-Kun Liu, S. X. Dou

Shi Xue Dou

With an advent of the ubiquitous era, the demand for rechargeable batteries with a higher energy density is getting more and more critical. It is because applications are emerging such as electric vehicles and various types of portable electronic devices. Carbonaceous materials are commonly adopted as the anode material for commercial lithium-ion secondary batteries because it can reversibly intercalate or de-intercalate Li ion. However, low capacity of carbon has become a limiting factor in wider applications, and high capacity alternative to carbonaceous material has thus been sought for. Even if tin and silicon have been considered as one of the …


"Organic" Mgb2-Xcx Superconductor With High Performance Enabled By Liquid Mixing Approach, Olga V. Shcherbakova, Alexey V. Pan, Emil Babic, S. X. Dou Jun 2013

"Organic" Mgb2-Xcx Superconductor With High Performance Enabled By Liquid Mixing Approach, Olga V. Shcherbakova, Alexey V. Pan, Emil Babic, S. X. Dou

Shi Xue Dou

Comparative analysis of structural and electromagnetic characteristics have been performed on nano SiC- and polycarbosilane-doped MgB2 samples prepared by the dry and liquid mixing approaches. The total benefit of liquid mixing approach for fabrication of "organic" MgB2 superconductor with excellent electromagnetic performance has been demonstrated


Effect Of Gallium Doping And Ball Milling Process On The Thermoelectric Performance Of N-Type Zno, Priyanka Jood, Germanas Peleckis, Xiaolin Wang, S X. Dou Jun 2013

Effect Of Gallium Doping And Ball Milling Process On The Thermoelectric Performance Of N-Type Zno, Priyanka Jood, Germanas Peleckis, Xiaolin Wang, S X. Dou

Shi Xue Dou

We report a systematic investigation of the thermoelectric properties of n-type Ga-doped ZnO synthesized using different ball milling conditions. Samples fabricated by the high-energy ball milling resulted in a highly dense layered structure with randomly distributed voids. These samples measured the lowest room temperature thermal conductivity, i.e., 27 W/mK due to increased phonon scattering. Furthermore, the Ga:ZnO system showed a metal–semiconductor transition above 300 K with transition temperature decreasing with increasing doping level. Measurement of the activation energy revealed the presence of one donor level around 3.9–7.8 meV and a deeper donor level around 15.4–18.1 meV below the conduction band …


Temperature Effect On Microstructure And Electromagnetic Performance Of Polycarbosilane And Sugar-Doped Mgb2 Wires, Andrey V. Shcherbakov, Josip Horvat, Olga V. Shcherbakova, Nikolina Novosel, Emil Babic, S. X. Dou Jun 2013

Temperature Effect On Microstructure And Electromagnetic Performance Of Polycarbosilane And Sugar-Doped Mgb2 Wires, Andrey V. Shcherbakov, Josip Horvat, Olga V. Shcherbakova, Nikolina Novosel, Emil Babic, S. X. Dou

Shi Xue Dou

The effect of processing temperature on structural and superconducting properties of 10 wt.% sugar- and 10 wt.% PCS-doped MgB2 wires is systematically investigated. It is demonstrated that these dopants significantly enhance the electromagnetic performance of Fe-clad MgB2 superconductor and increase its potential for practical application. The enhancement of in-field critical current density (Jc(Ba)) and upper critical field (Bc2) is due to formation of a large amount of lattice defects caused by impurities and C substitution into the MgB2 crystal lattice. High temperature sintering of sugar-doped sample results in as high Bc2 value as 37 T (at 5 K), which correlates …