Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Hydcem: A New Cement Hydration Model, Niall Holmes, Denis Kelliher, Mark Tyrer Aug 2019

Hydcem: A New Cement Hydration Model, Niall Holmes, Denis Kelliher, Mark Tyrer

Conference papers

Hydration models are useful to predict, understand and describe the behaviour of different cementitious-based systems. They are indispensable for undertaking long-term performance and service life predictions for existing and new products for generating quantitative data in the move towards more sustainable cements while optimising natural resources. One such application is the development of cement-based thermoelectric applications.

HYDCEM is a new model to predict the phase assemblage, degree of hydration, heat release and changes in pore solution chemistry over time for cements undergoing hydration for any w/c ratio and curing temperatures up to 450C. HYDCEM, written in MATLAB, is aimed at …


An Electrical Matlab Model Of Plasma Electrolytic Oxidation, Huize Xue May 2019

An Electrical Matlab Model Of Plasma Electrolytic Oxidation, Huize Xue

Theses

Plasma Electrolytic Oxidation (PEO), a part of Plasma electrolytic Deposition (PED), has been developing for surface modification of metallic materials in the past 20 years. During PEO process, sample always connect with anode of DC power source, under high temperature, accelerating process of oxidation reaction to from an average and dense oxidation film. A general passage, Plasma electrolysis for surface engineering, written by A.L. Yerokhin, X. Nie gives us a trend of what happened during PEO process but did not determine specific material and value. Linxin Zhu’s Development of PEO invent a new boiling system and investigated relationship between surface …


Microstructural Evaluation Of Aluminium Alloy A365 T6 In Machining Operation, Bankole I. Oladapo, S. Abolfazl Zahedi, Francis T. Omigbodun, Edwin A. Oshin, Victor A. Adebiyi, Olaoluwa B. Malachi Jan 2019

Microstructural Evaluation Of Aluminium Alloy A365 T6 In Machining Operation, Bankole I. Oladapo, S. Abolfazl Zahedi, Francis T. Omigbodun, Edwin A. Oshin, Victor A. Adebiyi, Olaoluwa B. Malachi

Electrical & Computer Engineering Faculty Publications

The optimum cutting parameters such as cutting depth, feed rate, cutting speed and magnitude of the cutting force for A356 T6 was determined concerning the microstructural detail of the material. Novel test analyses were carried out, which include mechanical evaluation of the materials for density, glass transition temperature, tensile and compression stress, frequency analysis and optimisation as well as the functional analytic behaviour of the samples. The further analytical structure of the particle was performed, evaluating the surface luminance structure and the profile structure. The cross-sectional filter profile of the sample was extracted, and analyses of Firestone curve for the …


Phase Field Model Of Thermally Induced Phase Separation (Tips) For The Formation Of Porous Polymer Membranes, Ashley Green, Aria Green May 2018

Phase Field Model Of Thermally Induced Phase Separation (Tips) For The Formation Of Porous Polymer Membranes, Ashley Green, Aria Green

Mechanical Engineering Undergraduate Honors Theses

Most membrane research and development has been done through experimental work, which can be costly and time consuming. An accurate computational model would greatly reduce the need for these experiments. The focus of the research presented in this paper is to create an accurate computational model for membrane formation using thermally induced phase separation (TIPS). A phase field model is employed to create this model including the Cahn Hilliard Equation and Flory Huggins Theory. This model produced computational results that correspond well with theoretical and experimental results. The model was then adapted to correspond to the PVDF/DPC polymer-solvent system by …


Protein-Specific Empirical Model Of Protein Adsorption On Surfaces, Dan Nicolau May 2017

Protein-Specific Empirical Model Of Protein Adsorption On Surfaces, Dan Nicolau

Single-use Technologies II: Bridging Polymer Science to Biotechnology Applications

Predicting protein adsorption from solution to a surface is an important problem in biomedicine and related fields. Despite constant attention in the literature, it is not currently possible to predict quantitatively the amount of adsorbed protein given environment, protein and surface parameters. We present a purely empirical approach to predict protein adsorption using a linearly piecewise model with breakpoint, based on progress in the understanding and quantification of physico-chemical properties on protein molecular surfaces. This model is capable of accounting for over 90% of the variance in the data, despite the fact that the adsorption data spans over three orders …


Spare Parts On Demand Using Additive Manufacturing : A Simulation Model For Cost Evaluation., Stefan Jedeck Dec 2015

Spare Parts On Demand Using Additive Manufacturing : A Simulation Model For Cost Evaluation., Stefan Jedeck

Electronic Theses and Dissertations

Little is known about the impact of additive manufacturing in the spare part supply chain. A few studies are available, but they focus on specific parts and their applications only. A general model, which can be adapted to different applications, is nonexistent. This dissertation proposes a decision making framework that enables an interested practitioner/manager to decide whether using additive manufacturing to make spare parts on demand is economical when compared to conventional warehousing strategy. The framework consists of two major components: a general discrete event simulation model and a process of designing a wide range of simulation scenarios. The goal …


An Empirical Model For Build-Up Of Sodium And Calcium Ions In Small Scale Reverse Osmosis, Subriyer Nasir Nov 2010

An Empirical Model For Build-Up Of Sodium And Calcium Ions In Small Scale Reverse Osmosis, Subriyer Nasir

Makara Journal of Technology

A simple models for predicting build-up of solute on membrane surface were formulated in this paper. The experiments were conducted with secondary effluent, groundwater and simulated feed water in small-scale of RO with capacity of 2000 L/d. Feed water used in the experiments contained varying concentrations of sodium, calcium, combined sodium and calcium. In order to study the effect of sodium and calcium ions on membrane performance, experiments with ground water and secondary effluent wastewater were also performed. Build-up of salts on the membrane surface was calculated by measuring concentrations of sodium and calcium ions in feed water permeate and …


Review Of Mathematical Model For Proton Exchange Membrane Fuel Cell, Shan-Hai Ge, Bao-Lian Yi, Hua-Min Zhang Nov 2002

Review Of Mathematical Model For Proton Exchange Membrane Fuel Cell, Shan-Hai Ge, Bao-Lian Yi, Hua-Min Zhang

Journal of Electrochemistry

In the review with 49 references, the mathematical models for proton exchange membrane fuel cell (PEMFC) were summarized. The mechanistic model and empirical model were introduced. Transfer in the membrane, catalyst layer,diffusion layer and flow field of PEMFC were described. The importance of water and heat management was analyzed. The dimension, complexity and solving methods of the PEMFC model were discussed. The importance and validity to develop a model with time dimension are put forward.