Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Searching Extreme Mechanical Properties Using Active Machine Learning And Density Functional Theory, Joshua Ojih Oct 2021

Searching Extreme Mechanical Properties Using Active Machine Learning And Density Functional Theory, Joshua Ojih

Theses and Dissertations

Materials with extreme mechanical properties leads to future technological advancements. However, discovery of these materials is non-trivial. The use of machine learning (ML) techniques and density functional theory (DFT) calculation for structure properties prediction has helped to the discovery of novel materials over the past decade. ML techniques are highly efficient, but less accurate and density functional theory (DFT) calculation is highly accurate, but less efficient. We proposed a technique to combine ML methods and DFT calculations in discovering new materials with desired properties. This combination improves the search for materials because it combines the efficiency of ML and the …


High-Throughput Computation Of New Carbon Allotropes With Diverse Hybridization And Ultrahigh Hardness, Mohammed Al-Fahdi, Alejandro Rodriguez, Tao Ouyang, Ming Hu Jul 2021

High-Throughput Computation Of New Carbon Allotropes With Diverse Hybridization And Ultrahigh Hardness, Mohammed Al-Fahdi, Alejandro Rodriguez, Tao Ouyang, Ming Hu

Faculty Publications

The discovery of new carbon allotropes with different building blocks and crystal symmetries has long been of great interest to broad materials science fields. Herein, we report several hundred new carbon allotropes predicted by the state-of-the-art RG2 code and first-principles calculations. The types of new carbon allotropes that were identified in this work span pure sp2 , hybrid sp2/sp3 , and pure sp3 C–C bonding. All structures were globally optimized at the first-principles level. The thermodynamic stability of some selected carbon allotropes was further validated by computing their phonon dispersions. The predicted carbon allotropes …


Strain Components In Friction Stir Extrusion, Megan Ryan Apr 2020

Strain Components In Friction Stir Extrusion, Megan Ryan

Theses and Dissertations

Friction stir extrusion is a solid state process that uses a rotating die to perform extrusions. This process can be used to directly recycle waste from machining processes and has been shown to produce wires with desirable mechanical properties. In order to better understand the friction stir extrusion process, the effect of the process parameters on the strain distribution in the wires needs to be understood. The process parameters evaluated in this work are die advance rate, die rotational seed, and die geometry. A total of 16 wires were extruded using different combinations of these process parameters. Marker wires were …


Functionalized Graphitic Nanoreinforcement For Cement Composites, Nima Zohhadi Dec 2014

Functionalized Graphitic Nanoreinforcement For Cement Composites, Nima Zohhadi

Theses and Dissertations

Physical and mechanical properties of graphitic nanomaterials, in particular multiwalled carbon nanotubes (MWCNTs) and graphene nano-platelets (GNPs) make them promising candidates for nanoreinforcement of cement composites. The two key challenges associated with the incorporation of MWCNTs and GNPs are to attain uniform dispersion and interfacial bonding within the composite matrix. The effects of three main-stream dispersion techniques (namely, ultrasonication, acid-etching, and surfactant-coating) on the mechanical properties and microstructure of MWCNT- and GNP-cement composites were experimentally studied. Compressive strength tests and different characterization techniques including dynamic light scattering, Raman spectroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission …


Structural Origin Of Mechanical Prowess In Conch Shells, Haoze Li Jan 2013

Structural Origin Of Mechanical Prowess In Conch Shells, Haoze Li

Theses and Dissertations

Conch shells are natural nanocomposites with an exquisite multiscale hierarchical architecture which exhibit coupled ultrahigh mechanical strength and toughness. What materials design strategy renders conch shells such mechanical prowess? In this study, micro/nanoscale structural and mechanical characterization of conch shells (Busycon carica) has been carried out. We demonstrate, for the first time, direct evidence that the previously claimed single-crystal third-order lamellae - the basic building blocks in conch shells are essentially assembled with aragonite nanoparticles of the size ranging from 20 to 45 nm. The third-order lamellae exhibit not only elasticity but also plasticity with the strain up to 0.7% …


Welding Parameters, Distortion And Mechanical Properties Of Aa7075 Lap Joints In Ssfsw, Hejun Yu Jan 2013

Welding Parameters, Distortion And Mechanical Properties Of Aa7075 Lap Joints In Ssfsw, Hejun Yu

Theses and Dissertations

Friction Stir Welding (FSW), first invented by The Welding Institute of UK (TWI) in 1991, is a solid state welding process which was initially applied to welding Aluminum Alloy. FSW has wide application in industrial sectors. Stationary shoulder friction stir welding (SSFSW) was first developed to weld low thermal conductivity Ti-based alloys, which are hard to weld using conventional friction stir welding. Previous literatures showed SSFSW can produce uniform temperature distribution through thickness during the welding process. Since SSFSW is still under study phase, its advantages and disadvantages are not yet well defined. It is important to study the characteristics …


Doping Dependence Of Electronic And Mechanical Properties Of Gase1−XTeX And Ga1−XInXSe From First Principles, Zs. Rak, S. D. Mahanti, K. C. Mandal, N. C. Fernelius Oct 2010

Doping Dependence Of Electronic And Mechanical Properties Of Gase1−XTeX And Ga1−XInXSe From First Principles, Zs. Rak, S. D. Mahanti, K. C. Mandal, N. C. Fernelius

Faculty Publications

No abstract provided.


Effect Of Tensile Offset Angles On Micro/Nanoscale Tensile Testing, Xiaodong Li, Xinnan Wang, Wei-Che Chang, Yuh-Jin Chao, Ming Chang Mar 2005

Effect Of Tensile Offset Angles On Micro/Nanoscale Tensile Testing, Xiaodong Li, Xinnan Wang, Wei-Che Chang, Yuh-Jin Chao, Ming Chang

Faculty Publications

For one-dimensional (1D) structures such as tubes, wires, and beams, tensile testing is a simple and reliable methodology for measuring their mechanical properties. The tensile offset angle effect on mechanical property measurement has long been ignored. In this study, theoretical and finite-element analysis(FEA) models for analyzing the tensile offset angle effect have been established. It is found that longitudinal stress decreases with increasing offset angles. The theoretically calculated elastic modulus relative errors reach 4.45% at the offset angle of 10°, whereas the experimentally measured elastic modulus relative errors are 45.4% at the offset angle of 15°. The difference in elastic …


Effect Of Residual Thermal Stresses On Fracture Behavior And Mechanical Properties Of Al Sub 2 O Sub 3/Ni Cermets, Guo Jin Li, Da Ming Chen, Xiao Xian Huang, Jing Kun Guo Jan 2002

Effect Of Residual Thermal Stresses On Fracture Behavior And Mechanical Properties Of Al Sub 2 O Sub 3/Ni Cermets, Guo Jin Li, Da Ming Chen, Xiao Xian Huang, Jing Kun Guo

Faculty Publications

Effect of residual thermal stresses on fracture behavior and mechanical properties of Al2O3/Ni cermets was qualitatively explained by using theory on residual thermal stresses. When Ni particles are located within Al2O3 grains or Ni content is relatively low, tensile stresses are exerted at Al2O3-Al2O3 grain boundary. While fracturing, intergranular fracture is easily produced. When Ni particles are dispersed at Al2O3 grain boundary or Ni content is relatively high, compressive stresses are exerted at Al2O3-Al2O3grain boundary. …