Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Lignin

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 89

Full-Text Articles in Engineering

Biomass Derived Lignin Polymer Modification For Sustainable Chemical Engineering Applications, Samantha Glidewell, Keisha Walters May 2024

Biomass Derived Lignin Polymer Modification For Sustainable Chemical Engineering Applications, Samantha Glidewell, Keisha Walters

Chemical Engineering Undergraduate Honors Theses

Lignin is an abundant naturally occurring plant-based polymer that is branched, highly unsaturated, and rich in aliphatic and aromatic hydroxyl groups. Lignin is a significant byproduct of the wood pulp and paper industries; however, it has yet to be widely utilized in commercial applications due to its non-linear structure, broad range of molecular weights, hydrophobicity, high rigidity, and brittleness. Recent investigations into modifying lignin to broaden its potential uses have shown promising results. This thesis explores different modification techniques of the naturally occurring hardwood lignin polymer for specific applications in areas of water treatment and polyurethane (PU) production. The first …


Design And Develop Lignin Based Recyclable Copolymers For Hydrophobic Coatings, Di Xie May 2024

Design And Develop Lignin Based Recyclable Copolymers For Hydrophobic Coatings, Di Xie

Doctoral Dissertations

Due to the abundance, renewability, biodegradability, overall hydrophobicity, good compatibility with cellulose, and anti-UV/oxidant abilities, lignin has great application potentials in hydrophobic coatings on cellulose-based substrates. However, lignin's structural heterogeneity and rigidity challenge its value-added utilization. Herein, Kraft lignin (KL), from paper mills, is fractionated into more homogeneous fractions (FL), nanosized into lignin micro-nanospheres (LMNS), chemically modified and copolymerized with other constituents to fabricate hydrophobic coating materials with improved coating performances.

To investigate structure-property relationships of lignin-based copolymers, solvent fractionation is conducted to obtain FLs with different molecular weight (MW) and hydroxyl (OH) contents to prepare copolymers by integrating with …


Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant Dec 2023

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant

Doctoral Dissertations

Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall …


Development Of Lignin-Based Copolymers And Polymer Blends, David Chem Dec 2023

Development Of Lignin-Based Copolymers And Polymer Blends, David Chem

Graduate Theses and Dissertations

Increasing industrial interest in reducing fossil fuels in virgin polymer production and incorporating bio-based polymeric materials has led researchers to explore the potential of utilizing plant-based polymers such as lignin. Chapter 1 of this thesis presents a comprehensive overview of copolymerization and blending techniques for lignin and synthetic polymers, emphasizing different types of modifications and copolymerization techniques as well as key parameters such as temperature, reaction time, pH level, and solution compositions. These valorization methods are directed towards the development of high-value lignin-based materials with properties well-suited for various commercial applications. Chapter 2 offers a fundamental exploration into the amination …


Rapid Prediction Of Phonon Density Of States By Graph Neural Network And High-Throughput Screening Of Candidate Substrates For Wide Bandgap Electronic Cooling, Mohammed Saif Ali Al-Fahdi Oct 2023

Rapid Prediction Of Phonon Density Of States By Graph Neural Network And High-Throughput Screening Of Candidate Substrates For Wide Bandgap Electronic Cooling, Mohammed Saif Ali Al-Fahdi

Theses and Dissertations

Machine learning has demonstrated superior performance in predicting vast materials properties. However, predicting a continuous material property such as phonon density of states (DOS) is more challenging for machine learning due to the inherent issues of data smoothing and sensitivity to peak positions. In this work, phonon DOS of 2,931 inorganic cubic structures with 63 unique elements from the Open Quantum Materials Database are calculated by high precision density functional theory (DFT). With these training data, we build an equivariant graph neural network (GNN) for total phonon DOS of crystalline materials that utilizes site positions and atomic species as input …


Understanding Lignin’S Fast Pyrolysis Through Examination Of The Thermolysis Mechanisms Of Model Oligomers, Ross Wesley Houston Aug 2023

Understanding Lignin’S Fast Pyrolysis Through Examination Of The Thermolysis Mechanisms Of Model Oligomers, Ross Wesley Houston

Doctoral Dissertations

The lignocellulosic biorefinery is a visionary concept that endeavors to provide an alternative to fossil-based refineries by producing biobased fungible fuels and specialty chemicals almost exclusively derived currently from petroleum refineries. This vision of the lignocellulosic biorefinery can only be realized if all fractions of lignocellulosic biomass are efficiently deconstructed and valorized to generate a diverse portfolio of products to sustain it against market vicissitudes. Of the three main structural constituents of lignocellulosic biomass (i.e., cellulose, hemicellulose, and lignin), lignin is underutilized despite being the most abundant renewable source of aromatic platform chemicals, representing a growing 250 billion dollar market. …


Improving Lignin Recovery From Paper Mill And Biorefinery Waste Streams Via Liquid-Phase Splitting, Carter Fitzgerald Aug 2023

Improving Lignin Recovery From Paper Mill And Biorefinery Waste Streams Via Liquid-Phase Splitting, Carter Fitzgerald

All Dissertations

Lignin is an abundant biopolymer with significant promise due to its aromaticity. It has been targeted as a replacement for a number of petroleum-based products including adhesives, coatings, polyurethane foams, activated carbon, and carbon fibers. However, commercially available bulk lignins are too polydisperse, and contain too many residual metals from the pulping process that are detrimental to the properties of the final product.

The Sequential Liquid-lignin Recovery and Purification (SLRP) process was developed by Michael Lake and John Blackburn, in collaboration with Clemson, with the intention of creating a continuous method for recovering lignin from paper-mill black liquors. Thies and …


Biocrude Production From Lignin In Hydrothermal Medium: Effect Of Rapid Heating And Short Residence Time, Kyoko Hirayama Aug 2023

Biocrude Production From Lignin In Hydrothermal Medium: Effect Of Rapid Heating And Short Residence Time, Kyoko Hirayama

Civil & Environmental Engineering Theses & Dissertations

This study aims to address knowledge gaps in the production of valuable products from waste streams generated during lignocellulosic biofuel production. The primary objective is to develop a process that converts lignin, a byproduct of bioethanol refineries, into a sustainable biolubricant.

The first chapter examines recent advancements in synthesizing biolubricants and investigates their scalability. It explores innovative materials, catalysts, chemical modification approaches, and additives that have emerged in the field. A particular hurdle is the oxidative stability of biolubricants derived from plant oils, which are prone to autooxidation due to their C=C bonds. To overcome this, the study aims to …


Elucidating The Mechanical And Transport Properties Of Lignin-Based Hydrogel Composites, Nicholas Gregorich May 2023

Elucidating The Mechanical And Transport Properties Of Lignin-Based Hydrogel Composites, Nicholas Gregorich

All Dissertations

The use of lignin in the fabrication of soft composites has become an emerging area of research in polymer science and polymer chemistry. These lignin-based materials present numerous benefits, notably, a reduction in the use of petroleum-based precursor, improved structural benefits to otherwise soft host polymers, as well as the inherent antimicrobial and antioxidant properties of lignin, making it suitable for biomaterials. Herein, we present two chemical reaction pathways of incorporating lignin that was fractionated and cleaned using the Aqueous Lignin Purification with Hot Agents (ALPHA) process into poly(vinyl alcohol) (PVA) hydrogel composites for aqueous-based separations. By leveraging the ALPHA …


Characterization Of Lignin And Cellulose Biopolymers Structure – Function Relationships, Zachariah Pittman May 2023

Characterization Of Lignin And Cellulose Biopolymers Structure – Function Relationships, Zachariah Pittman

All Dissertations

Biomass is vital to ongoing efforts to secure a sustainable future. While many of our efforts focus on finding alternative forms of energy, biomass among them, only biomass has the potential to serve as a sustainable materials feedstock. However, biomass is heterogenous, complicating the upgrading processes needed to manufacture commodity and performance products. For example, plant biomass consists largely of cellulose, a crystalline polysaccharide, and lignin, a highly stable polyaromatic. The specific properties of cellulose and lignin depend greatly on the plant, harvesting conditions, and isolation procedures. Thus, accurate and reliable determination of the fundamental properties of biomass is crucial …


Determining Kinetic Parameters Of Cellulose And Lignin Pyrolysis By Gaussian Process Regression (Gpr) Method, Pichayaporn Viriya-Amornkij, Kazunori Kuwana Dec 2022

Determining Kinetic Parameters Of Cellulose And Lignin Pyrolysis By Gaussian Process Regression (Gpr) Method, Pichayaporn Viriya-Amornkij, Kazunori Kuwana

Progress in Scale Modeling, an International Journal

The ignition and flame-spread processes in the forest and urban fires involve the pyrolysis reactions of biomass materials. One of the most common methods for estimating the fire performance of a material is the evaluation of kinetic parameters, i.e., activation energy (𝐸), pre-exponential factor (𝐴), and reaction model (𝑓(𝛼)), from thermogravimetric analysis (TG) data. Typically, 𝐸 is estimated based on an Arrhenius-type equation such as Kissinger, Kissinger-Akahira-Sunose (KAS), and Friedman equations. Then, its value is adjusted along with other parameters by assuming a reaction model, e.g., the 𝑛-order model. This study proposes a Gaussian process regression (GPR) method to determine …


Structure And Dynamics Of Lignin In Condensed Phase For Biomass Conversion, Nusrat Jahan Dec 2022

Structure And Dynamics Of Lignin In Condensed Phase For Biomass Conversion, Nusrat Jahan

Theses and Dissertations

Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Harnessing the full potential of the lignocellulosic biomass for low-carbon energy requires the knowledge of efficient breakdown and fractionation of its carbohydrates and lignin. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Through all-atom MD simulation, we analyze the conformational transition of diverse lignin molecules in varying concentration of Methanol/water , DMSO/water …


Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere Dec 2022

Carbon Fibers From Bio-Based Precursors Derived From Renewable Sources, Sagar Kanhere

All Dissertations

Carbon fibers have the highest strength and modulus among all known fibers and are used as reinforcements in high-performance composites [1]. Carbon fibers also have a very low density relative to metals. Therefore, carbon fibers possess ultrahigh specific strength and modulus, which make them desirable for high-performance light-weight composites. A vast majority of commercial carbon fibers are produced from PAN precursors that are expensive, which limits the use of PAN-derived carbon fibers to aerospace applications (e.g., airplanes). However, for costsensitive applications, there is a need for low-cost, moderate performance carbon fibers. Lignin is a low-cost by-product of pulping and biorefining …


Modeling Solvent Extraction Of Lignin From Hardwoods, Su Pan Aug 2022

Modeling Solvent Extraction Of Lignin From Hardwoods, Su Pan

McKelvey School of Engineering Theses & Dissertations

This study interprets the observed behavior of solvent extraction of lignin from hardwoods by adapting the framework of the FLASHCHAIN theory (Niksa and Kerstein, 1991; Niksa, 2017). A constitution submodel specifies distributions of molecular weight and reactive sites for native lignin. The model simulates delignification as depolymerization of lignin macromolecules into fragments small enough to be soluble. This process competes with intrachain condensation that consumes labile bridges without forming new fragments, and with recombination that forms larger chains and inhibits further depolymerization. After the soluble fragments are transported from the particle into the bulk solvent, all chemistry continues as long …


Analysis Of Properties Of Asphalt Binder With The Addition Of Lignin, Frank A. Martin Junior May 2022

Analysis Of Properties Of Asphalt Binder With The Addition Of Lignin, Frank A. Martin Junior

Honors College Theses

As asphalt ages, its resistance to shear diminishes due to a change in composition, resulting in the need for repaving of roads. Current additives to asphalt binder focus on increasing the strength of the binder, but do nothing to prevent the ageing of the asphalt binder. Lignin is a biological additive that is known for its resistance to ultraviolet radiation. This research aims to study Lignin as an asphalt additive, which exhibits properties that can increase the resistance of degradation due to aging, as well as increasing the strength of the asphalt binder. This was done through the comparison of …


Heteroaggregation Of Lignin-Zein Nanoparticles: Effects Of Relative Size And Concentration, Yada Chulakham Jan 2022

Heteroaggregation Of Lignin-Zein Nanoparticles: Effects Of Relative Size And Concentration, Yada Chulakham

LSU Master's Theses

Nanotechnology has become an advanced tool for manufacturing materials of the future. As the size of a material is reduced to a nanoscale, its surface area to volume ratio increases drastically, and its surface property becomes size dependent. This allows scientists to make use of unique properties that nanomaterials have to offer to create novel materials that otherwise could not have been achieved in meter-scale materials. As more industrial companies have planned to incorporate different types of nanomaterials into their products, it is undeniable that some of these nanomaterials will be released to the environment. Such possibility has led to …


Review On Applications Of Lignin In Pavement Engineering: A Recent Survey, Hui Yao, Yiran Wang, Junfu Liu, Mei Xu, Pengrui Ma, Jie Ji, Zhanping You Jan 2022

Review On Applications Of Lignin In Pavement Engineering: A Recent Survey, Hui Yao, Yiran Wang, Junfu Liu, Mei Xu, Pengrui Ma, Jie Ji, Zhanping You

Michigan Tech Publications

Lignin is the second-largest plant polymer on Earth after cellulose. About 98% of lignin produced in the papermaking and pulping industry is used for combustion heating or power generation. Less than 2% of lignin is used in more valuable fields, mainly in the formulation of dispersants, adhesives, and surfactants. Asphalt is one of the most important materials in pavement engineering. It is a dark brown complex mixture composed of hydrocarbons with different molecular weights and their non-metallic derivatives. Because the chemical structure of lignin is similar to that of asphalt, it is a carbon-based hydrocarbon material. More researchers studied the …


Exploration Of Lignin-Based Superabsorbent Polymers (Hydrogels) For Soil Water Management And As A Carrier For Delivering Rhizobium Spp., Toby Adjuik Jan 2022

Exploration Of Lignin-Based Superabsorbent Polymers (Hydrogels) For Soil Water Management And As A Carrier For Delivering Rhizobium Spp., Toby Adjuik

Theses and Dissertations--Biosystems and Agricultural Engineering

Superabsorbent polymers (hydrogels) as soil amendments may improve soil hydraulic properties and act as carrier materials beneficial to soil microorganisms. Researchers have mostly explored synthetic hydrogels which may not be environmentally sustainable. This dissertation focused on the development and application of lignin-based hydrogels as sustainable soil amendments. This dissertation also explores the development of pedotransfer transfer functions (PTFs) for predicting saturated hydraulic conductivity using statistical and machine learning methods with a publicly available large data set. A lignin-based hydrogel was synthesized, and its impact on soil water retention was determined in silt loam and loamy fine sand soils. Hydrogel treatment …


Recovering And Upgrading Kraft Lignin For Application In Flexible Polyurethane Foam, Peng Quan Jan 2022

Recovering And Upgrading Kraft Lignin For Application In Flexible Polyurethane Foam, Peng Quan

Dissertations, Master's Theses and Master's Reports

Lignin is the second abundant natural polymer and has been highlighted as a potential substitute for fossil-based raw materials. However, the inherent molecular heterogeneity and the complex recovery processes result in the challenge of controlling the molecular properties and value-added applications of lignin in large scale. To address those issues, a novel acid-liquefaction process was developed in this study to recover Kraft lignin with improved molecular homogeneity directly from black liquor.

In the first study, the liquefaction parameters were screened based on yield and molecular weight properties of the recovered lignin. Then, the recovered lignin samples were used to replace …


Degumming Of Hemp Fibers Using Combined Microwave Energy And Deep Eutectic Solvent, Bulbul Ahmed Jul 2021

Degumming Of Hemp Fibers Using Combined Microwave Energy And Deep Eutectic Solvent, Bulbul Ahmed

LSU Master's Theses

Hemp is considered as one of the sustainable agricultural fiber materials. Degumming or surface modification of hemp bast is needed to produce single fibers for ensuing textile and industrial applications. The traditional degumming process necessitates a high amount of alkali, which causes detrimental environmental pollution. This study offers a new method to degum hemp fibers with reduced use of harmful alkali and precious water resources. In this work, hemp bast fibers were degummed by using combined microwave energy and deep eutectic solvent (DES). The properties of hemp fibers manufactured by this method were investigated and compared with the traditional alkali …


Bimetallic Catalyst For Lignin Depolymerization, Qishen Lyu May 2021

Bimetallic Catalyst For Lignin Depolymerization, Qishen Lyu

McKelvey School of Engineering Theses & Dissertations

This thesis is motivated by concerns regarding the need to develop more sustainable and economic technologies to meet rising global manufacturing and energy demands. These concerns have renewed governmental, industrial, and societal determination to reduce the world’s dependence on conventional natural resources and has led to considerable research on producing fuels and chemicals from feedstocks other than petroleum. Lignocellulosic biomass represents an abundant and renewable resource that could displace petroleum feedstock producing biofuels and multiple valuable chemical products with reduced greenhouse gas emissions. Lignin is the second abundant biopolymer source in nature and is found almost everywhere. Since the 1950’s, …


Next Generation Energy Storage: An Examination Of Lignin-Based Carbon Composite Anodes For Sodium Ion Batteries Through Modeling And Simulation, Dayton G. Kizzire May 2021

Next Generation Energy Storage: An Examination Of Lignin-Based Carbon Composite Anodes For Sodium Ion Batteries Through Modeling And Simulation, Dayton G. Kizzire

Doctoral Dissertations

The current energy market relies heavily on fossil fuel sources; however, we are amidst a momentous shift towards wind, solar, and water based renewable energies. Large-scale energy storage allows renewable energy to be stored and supply the grid with consistent energy despite changing weather conditions. Improvements to large-scale energy storage in terms of cost, safety, and sustainability are crucial to wide-scale adoption. A promising candidate for large-scale energy storage are sodium-ion batteries using hard carbon anodes. Sodium is globally available, cheaper, and more sustainable than lithium, but requires a different anode structure. A sustainable hard carbon anode with excellent Li-ion …


Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova May 2021

Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova

Doctoral Dissertations

Bio-based plastics and composites have seen increased industry adoption in recent years due to growing demand for materials with a low carbon footprint. The use of lignin as a feedstock for polymers has seen growing interest as the concept of an integrated cellulosic biorefinery gains traction and advances the need to use all components of separated biomass for value-added applications. Historically, use of lignin in thermoplastic and elastomeric copolymers and blends has been bottlenecked by the inability to introduce lignin content above 30 weight percent due to difficulties with interfacial adhesion of lignin with other soft segments. Efforts to overcome …


A Foray Into Laboratory Scale Soil Incubations With Corn Stover And High Lignin Fermentation Byproduct, Michelle Wang Apr 2021

A Foray Into Laboratory Scale Soil Incubations With Corn Stover And High Lignin Fermentation Byproduct, Michelle Wang

ENGS 88 Honors Thesis (AB Students)

As the production of biofuels increases to meet the demands of a growing low carbon economy, questions of sustainability surrounding its feedstock and waste streams have become increasingly relevant. In the biofuel production process, crop residues like corn stover are harvested from the field and converted to biofuels leaving generating a residue called high lignin fermentation byproduct (HLFB). From extensive process modelling in the literature, it is suggested that HLFB should be either combusted to fuel auxiliary conversion processes or returned to the soil in place of the crop residues that were harvested. Currently, there is little literature testing the …


Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez Jan 2021

Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez

LSU Doctoral Dissertations

This research examined the effect of biodegradable, polymeric, lignin-based nanoparticles (LNPs, 113.8±3.4, negatively charged) and zein nanoparticles (ZNP, 141.6±3.9, positively charged) on soybean plant health. The LNPs were synthesized from lignin, covalently linked to poly(lactic-co-glycolic) acid by emulsion evaporation. ZNPs were synthesized by nanoprecipitation. Soybeans grown hydroponically were treated with three concentrations (0.02, 0.2, and 2 mg/ml) of NPs at 28 days after germination. The effect of ZNPs and LNPs on plant health was determined through analysis of root and stem length, chlorophyll concentration, dry biomass of roots and stem, as well as carbon, nitrogen, and micronutrient absorption after 1, …


Incorporation Of Lignin In Natural And Synthetic Biomaterials To Alter Mechanical And Biochemical Properties For Enhanced Wound Healing, Jorge Alfonso Belgodere Nov 2020

Incorporation Of Lignin In Natural And Synthetic Biomaterials To Alter Mechanical And Biochemical Properties For Enhanced Wound Healing, Jorge Alfonso Belgodere

LSU Doctoral Dissertations

It is estimated that chronic, non-healing wounds affect more than 6.5 million Americans annually, with an estimated healthcare cost beyond $14 billion. Here, we attempted to create composites of natural (collagen type I or gelatin-methacrylate) or synthetic (poly(ethylene glycol) polymers incorporating a natural plant component, lignin, to combat the costs and limitations current wound healing methods face. Three-dimensional matrices of collagen type I (Col I) are widely used in tissue engineering applications for its abundance in many tissues, bioactivity with many cell types, and excellent biocompatibility. Inspired by the structural role of lignin in plant tissue, we found that sodium …


Lignin Valorization In Ionic Liquids And Deep Eutectic Solvent Via Catalysis And Biocatalysis, Jian Shi, Lalitendu Das, Enshi Liu, Joseph C. Stevens Jul 2020

Lignin Valorization In Ionic Liquids And Deep Eutectic Solvent Via Catalysis And Biocatalysis, Jian Shi, Lalitendu Das, Enshi Liu, Joseph C. Stevens

Biosystems and Agricultural Engineering Faculty Patents

This invention relates to a method for extracting valorized compounds from lignin by contacting lignins with an ionic liquid and/or a deep eutectic solvent and adding a catalyst and/or a biocatalyst to assist in breaking down the source material. Converting lignin into high value chemicals adds revenues for a bio-refinery and helps to improve the economic viability of biofuel production.


Characterization And Enzyme Engineering Of A Hyperthermophilic Laccase Toward Improving Its Activity In Ionic Liquid, Joseph Craig Stevens, David W. Rodgers, Claire Dumon, Jian Shi Jul 2020

Characterization And Enzyme Engineering Of A Hyperthermophilic Laccase Toward Improving Its Activity In Ionic Liquid, Joseph Craig Stevens, David W. Rodgers, Claire Dumon, Jian Shi

Biosystems and Agricultural Engineering Faculty Publications

Ionic liquids (ILs) are organic salts molten at room temperature that can be used for a wide variety of applications. Many ILs, such as 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), have been shown to remove a significant fraction of the complex biopolymer lignin from biomass during pretreatment. Valorizing lignin via biological pathways (e.g., enzymes) holds promise but is limited by the low biocompatibility of many ILs used for pretreatment. The discovery of thermostable enzymes and the application of enzyme engineering techniques have yielded biocatalysts capable of withstanding high concentrations of ILs. Converting lignin from a waste product to value-added …


Activated Carbon Nanofibers From Renewable (Lignin) And Waste Resources (Recycled Pet) And Their Adsorption Capacity Of Refractory Sulfur Compounds From Fossil Fuels, Efstratios Svinterikos Apr 2020

Activated Carbon Nanofibers From Renewable (Lignin) And Waste Resources (Recycled Pet) And Their Adsorption Capacity Of Refractory Sulfur Compounds From Fossil Fuels, Efstratios Svinterikos

Dissertations

The development of advanced engineering materials such as carbon nanofibers from low-cost, renewable and/or waste resources is a key aspect of sustainability. In addition, escalating concerns related to the presence of noxious sulfur compounds in commercial fuels are driving the need to develop more efficient desulfurization technologies. In this PhD dissertation research, activated carbon nanofibers were produced from a blend of lignin with recycled poly(ethylene terephthalate) (r-PET) and they were successfully tested for the adsorption of refractory sulfur compounds from a model diesel fuel. Starting from different lignin/r-PET mass ratios, precursor nanofibers of different morphologies were initially prepared using the …


Lignin: A Likely Precursor Of A Significant Fraction Of Humic Substances Via Oxidative Transformations, Seyyedhadi Khatami Apr 2020

Lignin: A Likely Precursor Of A Significant Fraction Of Humic Substances Via Oxidative Transformations, Seyyedhadi Khatami

Chemistry & Biochemistry Theses & Dissertations

Lignin is a major component of decaying terrestrial vegetation in soils and has been arguably reported to contribute substantially to the formation of soil carbon humus, and natural dissolved organic matter (DOM). To better understand the process by which this humification occurs, lignin and lignin-derived monomers were subjected to both biotic and abiotic oxidation processes. Two well-known oxidative transformation strategies were employed. The first involved the fungal degradation of brown-rot degraded wood subjected to a white-rot fungus (Phanerochaete chrysosporium) whose enzymes are particularly effective in lignin degradation via enzymatic oxidation. This enzymatic attack was monitored by ultrahigh resolution …