Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Lidar

Wright State University

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Leveraging 3d Models For Sar-Based Navigation In Gps-Denied Environments, Zachary A. Reid Jan 2018

Leveraging 3d Models For Sar-Based Navigation In Gps-Denied Environments, Zachary A. Reid

Browse all Theses and Dissertations

This thesis considers the use of synthetic aperture radar (SAR) to provide absolute platform position information in scenarios where GPS signals may be degraded, jammed, or spoofed. Two algorithms are presented, and both leverage known 3D ground structure in an area of interest, e.g. provided by LIDAR data, to provide georeferenced position information to airborne SAR platforms. The first approach is based on the wide-aperture layover properties of elevated reflectors, while the second approach is based on correlating backprojected imagery with digital elevation imagery. Both of these approaches constitute the system we have designated: SARNAV. Building on 3D backprojection, localization …


Last Two Surface Range Detector For Direct Detection Multisurface Flash Lidar In 90nm Cmos Technology, Douglas Preston Jan 2017

Last Two Surface Range Detector For Direct Detection Multisurface Flash Lidar In 90nm Cmos Technology, Douglas Preston

Browse all Theses and Dissertations

This thesis explores a novel detection architecture for use in a Direct-Detect Flash LIDAR system. The proposed architecture implements detection of the last two surfaces within single pixels of a target scene. The novel, focal plane integrated detector design allows for detection of objects behind sparse and/or partially reflective covering such as forest canopy. The proposed detector would be duplicated and manufactured on-chip behind each avalanche photodiode within a focal plane array. Analog outputs are used to minimize interference from digital components on the analog input signal. The proposed architecture is a low-footprint solution which requires low computational post-processing. Additionally, …