Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Engineering

Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White Mar 2015

Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White

Ralph E. White

Electrochemical properties of bare and copper-coated LaNi4.27Sn0.24 electrodes were investigated in alkaline solution. The exchange current density, polarization resistance, and equilibrium potential were determined as functions of the state of charge in the electrodes. The symmetry factors for bare and copper-coated electrodes were estimated to be 0.53 and 0.52, respectively. By using a constant current discharge technique, the hydrogen diffusion coefficient in bare and coated LaNi4.27Sn0.24 was estimated to be 6.75 × 10–11 cm2/s.


Application Of Porous Electrode Theory On Metal Hydride Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White Mar 2015

Application Of Porous Electrode Theory On Metal Hydride Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White

Ralph E. White

Porous electrode theory was applied to estimate the exchange current density, the polarization resistance, and symmetry factor for LaNi4.27Sn0.24 hydride electrode in alkaline solution. The exchange current density, polarization resistance, and symmetry factor were determined from polarization curves which were obtained at low overpotentials.


La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen Mar 2015

La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen

Fanglin Chen

Porous yttria-stabilized bismuth oxides (YSB) were investigated as the backbones for La0.85Sr0.15MnO3−#1;(LSM) infiltrated cathodes in intermediate-temperature solid oxide fuel cells. The cathodes were evaluated using anode-supported single cells with scandia-stabilized zirconia as the electrolytes. With humidified H2 as the fuel, the cell showed peak power density of 0.33, 0.52, and 0.74 W cm−2 at 650, 700, and 750°C, respectively. At 650°C, the cell polarization resistance was only 1.38 Ω cm2, <50% of the lowest value previously reported, indicating that YSB is a promising backbone for the LSM infiltrated cathode.


Sol-Gel Synthesis Of A New Oxide-Ion Conductor Sr- And Mg-Doped Lagao3 Perovskite, Kevin Huang, Man Feng, John Goodenough Feb 2015

Sol-Gel Synthesis Of A New Oxide-Ion Conductor Sr- And Mg-Doped Lagao3 Perovskite, Kevin Huang, Man Feng, John Goodenough

Kevin Huang

No abstract provided.


Increasing Power Density Of Lsgm-Based Solid Oxide Fuel Cells Using New Anode Materials, Kevin Huang, Jen-Hau Wan, John Goodenough Feb 2015

Increasing Power Density Of Lsgm-Based Solid Oxide Fuel Cells Using New Anode Materials, Kevin Huang, Jen-Hau Wan, John Goodenough

Kevin Huang

Chemical reactions between the superior perovskite oxide-ion conductor Sr- and Mg-doped LaGaO3 (LSGM), CeO2, and NiO have been studied by powder X-ray diffraction. The results showed that an extensive reactivity occurs as a result of La migration driven by a gradient of La chemical activity. La migration across the LSGM/electrode interfaces in a fuel cell leads to the formation of resistive phases at the interface, either LaSrGa3O7 or LaSrGaO4. Use of 40 mol % La2O3 -doped CeO2 as an interlayer between anode and electrolyte as well as in the NiO-containing anode prevents all reactions found. Consequently, the air-H2 cell maximum …


Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John Goodenough, Christopher Milliken Feb 2015

Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John Goodenough, Christopher Milliken

Kevin Huang

The electrode performance of a single solid oxide fuel cell was evaluated using a 500 μm thick La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) as the electrolyte membrane. Comparison of La0.6Sr0.4CoO3-δ (LSCo) and La0.9Sr0.1MnO3 (LSM) as cathodes showed LSCo gave an exchange current density two orders of magnitude higher than that of LSM. Comparison of CeO2/Ni and LSGM/Ni as anodes showed a degradation of the latter with time, and studies of the anode‐electrolyte interface and the reactivity of NiO and LSGM suggest better anode …


Oxygen Permeation Through Cobalt-Containing Perovskites: Surface Oxygen Exchange Vs. Lattice Oxygen Diffusion, Kevin Huang, John B. Goodenough Feb 2015

Oxygen Permeation Through Cobalt-Containing Perovskites: Surface Oxygen Exchange Vs. Lattice Oxygen Diffusion, Kevin Huang, John B. Goodenough

Kevin Huang

The oxygen permeation fluxes from p′O2 to pnO2 (p′O2>pnO2) across cobalt-containing perovskite ceramic membranes La1−xSrxCoO3−δ and SrCo0.8Fe0.2O3−δ were measured by gas chromatography as functions of oxygen chemical potential gradient, temperature, thickness, and catalytic activity on the surface. Power indexes 0.5>n>0 for uncatalyzed La1−xSrxCoO3−δ and 1>n>0.5 for SrCo0.8Fe0.2O3−δ were obtained when JO2 vs. p′nO2p'′nO2 …


Phosphorus Removal From Ebpr Sludge Dewatering Liquors Using Lanthanum Chloride, Aluminum Sulfate And Ferric Chloride, Michael Strileski Aug 2013

Phosphorus Removal From Ebpr Sludge Dewatering Liquors Using Lanthanum Chloride, Aluminum Sulfate And Ferric Chloride, Michael Strileski

UNLV Theses, Dissertations, Professional Papers, and Capstones

In wastewater treatment, enhanced biological phosphorus removal (EBPR) is becoming an increasingly popular alternative to chemical precipitation (CP) because of its lower costs and reduced sludge production. However, downstream solids handling processes such as digestion, sludge storage and dewatering promote an undesirable release (i.e. secondary release) of polyphosphate that was stored within EBPR sludge. Released phosphate is recycled to the head of the plant with the liquors of sludge dewatering processes. The concentration of phosphate in recycle streams from EBPR systems can be one to two orders of magnitude higher than the influent phosphorus concentration entering the EBPR system. Plants …


Lanthanum Halide Nanoparticle Scintillators For Nuclear Radiation Detection, Paul Guss, Ronald Guise, Ding Yuan, Sanjoy Mukhopadhyay, Robert O’Brien, Daniel Robert Lowe, Zhitao Kang, Hisham Menkara, Vivek V. Nagarkar Jan 2013

Lanthanum Halide Nanoparticle Scintillators For Nuclear Radiation Detection, Paul Guss, Ronald Guise, Ding Yuan, Sanjoy Mukhopadhyay, Robert O’Brien, Daniel Robert Lowe, Zhitao Kang, Hisham Menkara, Vivek V. Nagarkar

Mechanical Engineering Faculty Research

Nanoparticles with sizesscintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.


Characteristics Of The Hydrogen Electrode In High Temperature Steam Electrolysis Process, Chao Jin, Chenghao Yang, Fanglin Chen Aug 2011

Characteristics Of The Hydrogen Electrode In High Temperature Steam Electrolysis Process, Chao Jin, Chenghao Yang, Fanglin Chen

Faculty Publications

YSZ-electrolyte supported solid oxide electrolyzer cells (SOECs) using LSM-YSZ oxygen electrode but with three types of hydrogen electrode, Ni–SDC, Ni–YSZ and LSCM–YSZ have been fabricated and characterized under different steam contents in the feeding gas at 850°C. Electrochemical impedance spectra results show that cell resistances increase with the increase in steam concentrations under both open circuit voltage and electrolysis conditions, suggesting that electrolysis reaction becomes more difficult in high steam content. Pt reference electrode was applied to evaluate the contributions of the hydrogen electrode and oxygen electrode in the electrolysis process. Electrochemical impedance spectra and over potential of both electrodes …


Sr2Fe1.5Mo0.5O6 As Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells With La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte, Guoliang Xiao, Qiang Liu, Fei Zhao, Lei Zhang, Changrong Xia, Fanglin Chen Mar 2011

Sr2Fe1.5Mo0.5O6 As Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells With La0.8Sr0.2Ga0.87Mg0.13O3 Electrolyte, Guoliang Xiao, Qiang Liu, Fei Zhao, Lei Zhang, Changrong Xia, Fanglin Chen

Faculty Publications

The performance of Sr2Fe1.5Mo0.5O6 (SFMO) as a cathode material has been investigated in this study. The oxygen ionic conductivityof SFMO reaches 0.13 S cm-1 at 800°C in air. The chemical diffusion coefficient (Dchem) and surface exchange constant (kex) of SFMO at 750°C are 5.0 x 10-6 cm2 s-1 and 2.8 x 10-5 cm s-1, respectively, suggesting that SFMO may have good electrochemicalactivity for oxygen reduction. SFMO shows a thermal expansion coefficient (TEC) of 14.5 x 10-6 K-1 the …


Investigation Of The Threshold Voltage Shift Effect Of La2o3 On Tin/Hfo2/La2o3/Sio2/Si Stacks, Ming Di Jan 2010

Investigation Of The Threshold Voltage Shift Effect Of La2o3 On Tin/Hfo2/La2o3/Sio2/Si Stacks, Ming Di

Legacy Theses & Dissertations (2009 - 2024)

The semiconductor industry continues to scale (shrink) transistor dimensions to both increase the number of transistors per integrated circuit and their speed. One important aspect of scaling is the need to decrease the equivalent oxide thickness of the transistor gate dielectric while minimizing leakage current. Traditional thin layer SiO2 or SiOxNy films have been replaced by higher dielectric constant film stacks Here we study one example, the HfO2/La2O3/SiO2 stack. This dissertation describes an investigation of the use of La2O3 to reduce the threshold voltage of TiN/HfO2/SiO2/Si stacks (high-k/metal gate stacks). A significant aspect of this study is the determination of …


Neutron Structural Studies On The Superconducting (Nd₁₋ₓcax)(Ba₁.₆La₀.₄)Cu₃Oz System, Amish G. Joshi, R. G. Kulkarni, William B. Yelon, Ram Prasad, M. R. Gonal Apr 2009

Neutron Structural Studies On The Superconducting (Nd₁₋ₓcax)(Ba₁.₆La₀.₄)Cu₃Oz System, Amish G. Joshi, R. G. Kulkarni, William B. Yelon, Ram Prasad, M. R. Gonal

Physics Faculty Research & Creative Works

We have investigated the influence of Ca ion substitution on the structural and superconducting properties of (Nd1−xCax)(Ba1.6La0.4)Cu3Oz system. Magnetization, x-ray diffraction, and neutron diffraction studies have been carried out on a series of compounds with x=0.0-0.6. The superconducting transition temperature Tc, determined from magnetization measurements, increases with increasing Ca2+ substitution. Neutron diffraction studies reveal that these compounds crystallize in a tetragonal structure (space group P4/mmm). A detailed analysis of the neutron diffraction data reveals that Ca and La ions are intermixed at the nominal Ba and Nd sites. While a major fraction of Ca ions occupy the usual Nd site, …


La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen Mar 2009

La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen

Faculty Publications

Porous yttria-stabilized bismuth oxides (YSB) were investigated as the backbones for (LSM) infiltrated cathodes in intermediate-temperature solid oxide fuel cells. The cathodes were evaluated using anode-supported single cells with scandia-stabilized zirconia as the electrolytes. With humidified as the fuel, the cell showed peak power density of 0.33, 0.52, and at 650, 700, and , respectively. At , the cell polarization resistance was only , of the lowest value previously reported, indicating that YSB is a promising backbone for the LSM infiltrated cathode.


Increasing Power Density Of Lsgm-Based Solid Oxide Fuel Cells Using New Anode Materials, Kevin Huang, Jen-Hau Wan, John B. Goodenough Jun 2001

Increasing Power Density Of Lsgm-Based Solid Oxide Fuel Cells Using New Anode Materials, Kevin Huang, Jen-Hau Wan, John B. Goodenough

Faculty Publications

Chemical reactions between the superior perovskite oxide-ion conductor Sr- and Mg-doped LaGaO3 (LSGM), CeO2, and NiO have been studied by powder X-ray diffraction. The results showed that an extensive reactivity occurs as a result of La migration driven by a gradient of La chemical activity. La migration across the LSGM/electrode interfaces in a fuel cell leads to the formation of resistive phases at the interface, either LaSrGa3O7 or LaSrGaO4. Use of 40 mol % La2O3 -doped CeO2 as an interlayer between anode and electrolyte as well as in …


Oxygen Permeation Through Cobalt-Containing Perovskites: Surface Oxygen Exchange Vs. Lattice Oxygen Diffusion, Kevin Huang, John B. Goodenough May 2001

Oxygen Permeation Through Cobalt-Containing Perovskites: Surface Oxygen Exchange Vs. Lattice Oxygen Diffusion, Kevin Huang, John B. Goodenough

Faculty Publications

The oxygen permeation fluxes from p′O2 to pnO2 (p′O2>pnO2) across cobalt-containing perovskite ceramic membranes La1−xSrxCoO3−δ and SrCo0.8Fe0.2O3−δ were measured by gas chromatography as functions of oxygen chemical potential gradient, temperature, thickness, and catalytic activity on the surface. Power indexes 0.5>n>0 for uncatalyzed La1−xSrxCoO3−δ and 1>n>0.5 for SrCo0.8Fe0.2O3−δ were obtained when JO2 vs. p′nO2p'′nO2 …


Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John B. Goodenough, Christopher Milliken Oct 1997

Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John B. Goodenough, Christopher Milliken

Faculty Publications

The electrode performance of a single solid oxide fuel cell was evaluated using a 500 μm thick La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) as the electrolyte membrane. Comparison of La0.6Sr0.4CoO3-δ (LSCo) and La0.9Sr0.1MnO3 (LSM) as cathodes showed LSCo gave an exchange current density two orders of magnitude higher than that of LSM. Comparison of CeO2/Ni and LSGM/Ni as anodes showed a degradation of the latter with time, and studies of the anode‐electrolyte interface and the reactivity of NiO and LSGM suggest better anode …


Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White Jan 1996

Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White

Faculty Publications

Electrochemical properties of bare and copper-coated LaNi4.27Sn0.24 electrodes were investigated in alkaline solution. The exchange current density, polarization resistance, and equilibrium potential were determined as functions of the state of charge in the electrodes. The symmetry factors for bare and copper-coated electrodes were estimated to be 0.53 and 0.52, respectively. By using a constant current discharge technique, the hydrogen diffusion coefficient in bare and coated LaNi4.27Sn0.24 was estimated to be 6.75 × 10–11 cm2/s.


Application Of Porous Electrode Theory On Metal Hydride Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White Jan 1996

Application Of Porous Electrode Theory On Metal Hydride Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White

Faculty Publications

Porous electrode theory was applied to estimate the exchange current density, the polarization resistance, and symmetry factor for LaNi4.27Sn0.24 hydride electrode in alkaline solution. The exchange current density, polarization resistance, and symmetry factor were determined from polarization curves which were obtained at low overpotentials.


Electrochemical Determination Of The Diffusion Coefficient Of Hydrogen Through An Lani4.25Al0.75 Electrode In Alkaline Aqueous Solution, G. Zheng, Branko N. Popov, Ralph E. White Jan 1995

Electrochemical Determination Of The Diffusion Coefficient Of Hydrogen Through An Lani4.25Al0.75 Electrode In Alkaline Aqueous Solution, G. Zheng, Branko N. Popov, Ralph E. White

Faculty Publications

The constant potential and constant current discharge techniques were used to determine the hydrogen diffusion coefficients in an LaNi4.25Al0.75 electrode. The values obtained were 2.97 × 10–11 and 3.30 × 10–11 cm2/s, respectively. The advantages and disadvantages of these two techniques are discussed.


Electrochemical Determination Of The Diffusion Coefficient Of Hydrogen Through An Lani4.25Al0.75 Electrode In Alkaline Aqueous Solution, G. Zheng, Branko N. Popov, Ralph E. White Jan 1995

Electrochemical Determination Of The Diffusion Coefficient Of Hydrogen Through An Lani4.25Al0.75 Electrode In Alkaline Aqueous Solution, G. Zheng, Branko N. Popov, Ralph E. White

Faculty Publications

The constant potential and constant current discharge techniques were used to determine the hydrogen diffusion coefficients in an LaNi4.25Al0.75 electrode. The values obtained were 2.97 × 10–11 and 3.30 × 10–11 cm2/s, respectively. The advantages and disadvantages of these two techniques are discussed.