Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Hardness

Mechanical Engineering

2005

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Top-Down Structure And Device Fabrication Using In Situ Nanomachining, Xiaodong Li, Xinnan Wang, Qihua Xiong, Peter C. Eklund Dec 2005

Top-Down Structure And Device Fabrication Using In Situ Nanomachining, Xiaodong Li, Xinnan Wang, Qihua Xiong, Peter C. Eklund

Faculty Publications

We demonstrate the potential of an alternative tool for the fabrication of nanoscale structures and devices. A nanoindenter integrated with an atomic force microscope is shown to be a powerful machine tool for cutting precise length nanowires or nanobelts and for manipulating the shortened wires. We also demonstrate its utility in cutting grooves and fabricating dents (or periodic arrays of dents) in ZnSnanobelts. This approach permits the direct mechanical machining of nanodevices that are supported on a substrate without the inherent complications of e beam or photolithography.


Mechanics Of Hydrogenated Amorphous Carbon Deposits From Electron-Beam-Induced Deposition Of Paraffin Precursor, W. Ding, D. A. Dikin, X. Chen, R. D. Piner, R. S. Ruoff, E. Zussman, X. Wang, Xiaodong Li Jul 2005

Mechanics Of Hydrogenated Amorphous Carbon Deposits From Electron-Beam-Induced Deposition Of Paraffin Precursor, W. Ding, D. A. Dikin, X. Chen, R. D. Piner, R. S. Ruoff, E. Zussman, X. Wang, Xiaodong Li

Faculty Publications

Many experiments on the mechanics of nanostructures require the creation of rigid clamps at specific locations. In this work, electron-beam-induced deposition(EBID) has been used to depositcarbonfilms that are similar to those that have recently been used for clamping nanostructures. The film deposition rate was accelerated by placing a paraffin source of hydrocarbon near the area where the EBIDdeposits were made. High-resolution transmission electron microscopy, electron-energy-loss spectroscopy, Raman spectroscopy, secondary-ion-mass spectrometry, and nanoindentation were used to characterize the chemical composition and the mechanics of the carbonaceous deposits. The typical EBIDdeposit was found to be hydrogenated amorphous carbon (a-C:H) having …


Nanomechanical Characterization Of Cavity Growth And Rupture In Hydrogen-Implanted Single-Crystal Batio3., Young-Bae Park, Patrick Nardi, Xiaodong Li, Harry A. Atwater Apr 2005

Nanomechanical Characterization Of Cavity Growth And Rupture In Hydrogen-Implanted Single-Crystal Batio3., Young-Bae Park, Patrick Nardi, Xiaodong Li, Harry A. Atwater

Faculty Publications

A thermodynamic model of cavitynucleation and growth in ion-implanted single-crystal BaTiO3 layer is proposed, and cavity formation is related to the measured mechanical properties to better understand hydrogen implantation-induced layer transfer processes for ferroelectric thin films. The critical radius for cavitynucleation was determined experimentally from blistering experiments performed under isochronal anneal conditions and was calculated using continuum mechanical models for deformation and fracture, together with thermodynamic models. Based on thermodynamic modeling, we suggest that cavitiesgrow toward the cracking criteria at a critical blister size whereupon gas is emitted from ruptured cavities. The main driving force for layer splitting is …