Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Nonreciprocal Electromagnetics Of Layered Media, Samaneh Pakniyat Aug 2022

Nonreciprocal Electromagnetics Of Layered Media, Samaneh Pakniyat

Theses and Dissertations

In plasmonic systems, interaction of light and surface plasmons leads to excitation of surface plasmon polaritons (SPPs) carrying energy on the surface. In an isotropic plasmonic system, the SPPs optical response is reciprocal, which means that the forward and backward surface waves have identical propagation behaviors and SPPs refract when they encounter a discontinuity on the surface. In order to excite SPPs resilient to the surface disorders, the system reciprocity needs to be broken by different techniques such as applying an external magnetic bias. In this case, the plasmonic system becomes a gyrotropic medium. Recently, it has been shown that …


In Situ Chemical Probing Of Vacancy Defects In Graphene And Boron Nitride At Room Temperature, Ali Ihsan Altan May 2019

In Situ Chemical Probing Of Vacancy Defects In Graphene And Boron Nitride At Room Temperature, Ali Ihsan Altan

Theses and Dissertations

IN SITU CHEMICAL PROBING OF VACANCY DEFECTS IN GRAPHENE AND BORON NITRIDE AT ROOM TEMPERATURE

by

Ali Ihsan Altan

The University of Wisconsin-Milwaukee, 2019

Under the Supervision of Professor Jian Chen

Chemical vapor deposition (CVD) has emerged as the most promising technique towards manufacturing of large area, high quality graphene. Characterization, understanding, and controlling of various structural defects in CVD-grown graphene are essential to realize its true potential for real-world applications. We report a new method for in situ chemical probing of vacancy defects in CVD-grown graphene at room temperature. Our approach is based on a solid–gas phase reaction that …


In Situ Chemical Probing Of Vacancy Defects In Graphene And Boron Nitride At Room Temperature, Ali Ihsan Altan May 2019

In Situ Chemical Probing Of Vacancy Defects In Graphene And Boron Nitride At Room Temperature, Ali Ihsan Altan

Theses and Dissertations

IN SITU CHEMICAL PROBING OF VACANCY DEFECTS IN GRAPHENE AND BORON NITRIDE AT ROOM TEMPERATURE

by

Ali Ihsan Altan

The University of Wisconsin-Milwaukee, 2019

Under the Supervision of Professor Jian Chen

Chemical vapor deposition (CVD) has emerged as the most promising technique towards manufacturing of large area, high quality graphene. Characterization, understanding, and controlling of various structural defects in CVD-grown graphene are essential to realize its true potential for real-world applications. We report a new method for in situ chemical probing of vacancy defects in CVD-grown graphene at room temperature. Our approach is based on a solid–gas phase reaction that …


Graphene-Based Lubrication For Tribological Applications: Nanolubricants And Self-Lubricating Nanocomposites, Emad Omrani Aug 2018

Graphene-Based Lubrication For Tribological Applications: Nanolubricants And Self-Lubricating Nanocomposites, Emad Omrani

Theses and Dissertations

In this work, the effects of graphene nanoplatelets (GNPs) additives on tribological properties of aluminum are investigated. The objective of this research is to investigate and explain the enhancement mechanisms of GNPs at the contact surface during tribological testing. The graphene nanoplatelets are studied both as an oil additive (Chapter I) and as a reinforcement (Chapter II) experimentally. The coefficient of friction (COF) and wear rate were identified using a pin-on-disk test setup.

Mineral, organic, and synthetic oils are not always efficient enough to satisfy the demands of a high-performance lubricant; therefore, mixing additives with base fluids is an approach …


Nano-Crystalline Metal Matrix Nano-Composites Reinforced By Graphene And Alumina: Effect Of Reinforcement Properties And Concentration On Mechanical Behavior, Meysam Tabandeh Khorshid Aug 2016

Nano-Crystalline Metal Matrix Nano-Composites Reinforced By Graphene And Alumina: Effect Of Reinforcement Properties And Concentration On Mechanical Behavior, Meysam Tabandeh Khorshid

Theses and Dissertations

Metal matrix composites (MMCs) and Metal Matrix Nano-composites (MMNCs) are promising materials for a number of aerospace, defense, and automobile applications. Among all MMCs and MMNCs, aluminum is the most widely used matrix due to its low density coupled with high stiffness, high specific strength, high specific modulus and low thermal expansion coefficient. While high strengths have been shown in MMCs, they are known to have very limited ductility. However, there are indications that reducing reinforcement size to the nanoscale may improve strain to failure in addition to increase strength. Reducing grain size to the nanoscale has been found to …


A Novel Transport Based Model For Wire Media And Its Application To Scattering Problems, Ebrahim Forati Dec 2014

A Novel Transport Based Model For Wire Media And Its Application To Scattering Problems, Ebrahim Forati

Theses and Dissertations

Artificially engineered materials, known as metamaterials, have attracted the interest of researchers because of the potential for novel applications. Effective modeling of metamaterials is a crucial step for analyzing and synthesizing devices. In this thesis, we focus on wire medium (both isotropic and uniaxial) and validate a novel transport based model for them.

Scattering problems involving wire media are computationally intensive due to the spatially dispersive nature of homogenized wire media. However, it will be shown that using the new model to solve scattering problems can simplify the calculations a great deal.

For scattering problems, an integro-differential equation based on …


Tuning The Performance Of Nanocarbon-Based Gas Sensors Through Nanoparticle Decoration, Shumao Cui May 2013

Tuning The Performance Of Nanocarbon-Based Gas Sensors Through Nanoparticle Decoration, Shumao Cui

Theses and Dissertations

Tin dioxide (SnO2) is a well–known gas sensing material, but it becomes sensitive only at elevated temperatures (e.g., above 200 °C). Nanoparticles (NPs) combined with nanocarbons, such as carbon nanotubes (CNTs) and graphene, form a new class of hybrid nanomaterials that can exhibit fascinating gas sensing performance due to tunable electron transfer between NPs and nanocarbons induced by gas adsorption. Indeed, sensors made of SnO2 NPs&ndascoated CNTs have shown outstanding room–temperature sensing performance to various gases, including those that are undetectable by either SnO2 or CNTs alone.

The objectives of this dissertation study are to synthesize …


Probing Bonding And Dynamics At Heterogeneous Adsorbate/Graphene Interfaces, Eric Charles Mattson May 2013

Probing Bonding And Dynamics At Heterogeneous Adsorbate/Graphene Interfaces, Eric Charles Mattson

Theses and Dissertations

Graphene-based materials are becoming an astoundingly promising choice for many relevant technological and environmental applications. Deriving graphene from the reduction of graphene oxide (GO) is becoming a popular and inexpensive route toward the synthesis of these materials. While the desired product from GO reduction is pristine graphene, defects and residual oxygen functional groups inherited from the parent GO render reduced graphene oxide (RGO) distinct from graphene. In this work, the structure and bonding for GO and RGO is investigated to the end of a working understanding of the composition and properties of these materials. In situ selected area electron diffraction …