Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Pile-Supported Wharves Subjected To Inertial Loads And Lateral Ground Deformations. Ii: Guidelines For Equivalent Static Analysis, Milad Souri, Arash Khosravifar, Stephen E. Dickenson, Scott Schlechter, Nason Mccullough Nov 2022

Pile-Supported Wharves Subjected To Inertial Loads And Lateral Ground Deformations. Ii: Guidelines For Equivalent Static Analysis, Milad Souri, Arash Khosravifar, Stephen E. Dickenson, Scott Schlechter, Nason Mccullough

Civil and Environmental Engineering Faculty Publications and Presentations

An equivalent static analysis (ESA) procedure is proposed for the design of pile-supported wharves subjected to combined inertial and kinematic loads during earthquakes. The accuracy of the ESA procedure was evaluated against measurements from five large-scale centrifuge tests. The wharf structures in these tests were subjected to a suite of recorded ground motions and the associated superstructure inertia, as well as earthquake-induced slope deformations of varying magnitudes. It is shown that large bending moments at depths greater than 10 pile diameters were primarily induced by kinematic demands and can be estimated by applying soil displacements only (i.e., 100% kinematic). In …


Pile-Supported Wharves Subjected To Inertial Loads And Lateral Ground Deformations. I: Experimental Results From Centrifuge Tests, Milad Souri, Arash Khosravifar, Stephen E. Dickenson, Scott Schlechter, Nason Mccullough Nov 2022

Pile-Supported Wharves Subjected To Inertial Loads And Lateral Ground Deformations. I: Experimental Results From Centrifuge Tests, Milad Souri, Arash Khosravifar, Stephen E. Dickenson, Scott Schlechter, Nason Mccullough

Civil and Environmental Engineering Faculty Publications and Presentations

Five dynamic, large-scale centrifuge tests on pile-supported wharves were used to investigate the time- and depth-dependent nature of kinematic and inertial demands on the deep foundations during earthquake loading. The wharf structures in the physical experiments were subjected to a suite of recorded ground motions and imposed superstructure inertial demands on the piles. Partial to full liquefaction in loose sand resulted in slope deformations of varying magnitudes that imposed kinematic demands on the piles. It was found that the wharf inertia and soil displacements were always in phase during the critical cycle when bending moments were at their maximum values. …


Test Setup Design And Cyclic Evaluation Of Rocking Clt Wall And Floor Restoring Force Lateral System, Aaron Davis Smith Jul 2019

Test Setup Design And Cyclic Evaluation Of Rocking Clt Wall And Floor Restoring Force Lateral System, Aaron Davis Smith

Civil and Environmental Engineering Master's Project Reports

The introduction of the demand for mass timber buildings in areas with seismic hazards has called for new lateral systems. Lateral systems in mass timber building typically utilize a rocking shear wall with post-tensioned rods to provide system re-centering. These post-tensioned rods add axial load to the shear wall and potentially endure long term creep affects. Mass Timber buildings consist of cross laminated (clt) shear walls and floor slabs along with glulam beams. The flexural capacity of the CLT floor slabs along with dead load can provide an alternative source for the restoring force. This project developed a test setup …


Strength Tuned Steel Eccentric Braced Frames, Hosam Abdullah Al-Azzawi Jun 2019

Strength Tuned Steel Eccentric Braced Frames, Hosam Abdullah Al-Azzawi

Dissertations and Theses

The primary component in eccentrically braced frames (EBF) is the link as its plastic strength controls the design of the frame as well as the entire building within which it is installed. EBFs are the first part of building design and every other component is sized based on the forces developed in the link. Oversized link elements lead to the use of unnecessary materials and can increase construction costs. Additionally, the advantages of using a continuous member of the same depth for both the link and the controller beam (in terms of the cost and the time) motivates researchers to …


Lateral Deformation Behavior Of Mass Timber Beam To Column Gravity Connection, Tyler James Williams Jul 2018

Lateral Deformation Behavior Of Mass Timber Beam To Column Gravity Connection, Tyler James Williams

Civil and Environmental Engineering Master's Project Reports

A beam-to-column connection consisting of glulam beam and column and cross laminated timber floor slab was developed and experimentally evaluated for use in buildings that are expected to undergo earthquake-­­induced lateral drift. The connection utilized a passive gap closure mechanism designed to allow beam rotations during lateral drift while minimizing residual separation between the beam and the column following an earthquake. Full scale cyclic experiments were used to validate the connection’s minimal rotational stiffness and demonstrate low damage performance for lateral drifts exceeding 4.5% drift. The connection exhibited no degradation in gravity load capacity throughout the imposed lateral deformations. An …


Modified Design Procedures For Bridge Pile Foundations Subjected To Liquefaction-Induced Lateral Spreading, Arash Khosravifar, Jonathan Nasr Jan 2018

Modified Design Procedures For Bridge Pile Foundations Subjected To Liquefaction-Induced Lateral Spreading, Arash Khosravifar, Jonathan Nasr

Civil and Environmental Engineering Faculty Publications and Presentations

Effective-stress nonlinear dynamic analyses (NDA) were performed for piles in the liquefiable sloped ground to assess how inertia and liquefaction-induced lateral spreading combine in long- and short-duration motions. A parametric study was performed using input motions from subduction and crustal earthquakes covering a wide range of durations and amplitudes. The NDA results showed that the pile demands increased due to (a) longer duration shakings, and (b) liquefaction-induced lateral spreading compared to nonliquefied conditions. The NDA results were used to evaluate the accuracy of the equivalent static analysis (ESA) recommended by Caltrans/ODOT for estimating pile demands. Finally, the NDA results were …


Design And Experimental Investigation Of 500kv Current Transformer Seismic Retrofit Utilizing Structure Rocking And Supplemental Damping With Self-Centering, Ilya S. Palnikov Jul 2017

Design And Experimental Investigation Of 500kv Current Transformer Seismic Retrofit Utilizing Structure Rocking And Supplemental Damping With Self-Centering, Ilya S. Palnikov

Dissertations and Theses

Electrical substations perform a key role in electrical transmission and distribution; the ability for a substation to remain functional during and after a seismic event contributes significantly to the resilience of the clients supplied. Many legacy components currently installed in the main grid substations were designed with minimal consideration of lateral loads and are not qualified per IEEE693. One of the more critical high-voltage substation components that are vulnerable to earthquake damage is the 500kV freestanding current transformer (CT). The CT is particularly vulnerable due to the slenderness and mass distribution of the component. Current transformers are typically constructed from …


Achieving Operational Seismic Performance Of Rc Bridge Bents Retrofitted With Buckling-Restrained Braces, Ramiro Andrés Gabriel Bazáez Gallardo Feb 2017

Achieving Operational Seismic Performance Of Rc Bridge Bents Retrofitted With Buckling-Restrained Braces, Ramiro Andrés Gabriel Bazáez Gallardo

Dissertations and Theses

Typical reinforced concrete (RC) bridges built prior to 1970 were designed with minimum seismic consideration, leaving numerous bridges highly susceptible to damage following an earthquake. In order to improve the seismic behavior of substandard RC bridges, this study presents the seismic performance of reinforced concrete bridge bents retrofitted and repaired using Buckling-Restrained Braces (BRBs) while considering subduction zone earthquake demands. In order to reflect displacement demands from subduction ground motions, research studies were conducted to develop quasi-static loading protocols and then investigate their effect on structural bridge damage. Results suggested that subduction loading protocols may reduce the displacement ductility capacity …


Seismic Retrofit Case Study Of Reinforced Concrete Bridges With Buckling Restrained Braces, Michael K. Miotke Jan 2017

Seismic Retrofit Case Study Of Reinforced Concrete Bridges With Buckling Restrained Braces, Michael K. Miotke

Civil and Environmental Engineering Master's Project Reports

Many highway bridges in Oregon have been designed with minimal considerations for seismic hazard and are in need of retrofit. Although buckling restrained braces (BRBs) are not necessarily a new concept, using them to seismically retrofit bridges is. This case study investigates the BRB retrofit concept as compared to traditional retrofit measures for a sample of typical vulnerable bridges in Oregon. The objectives of evaluating these cases were to determine the feasibility of the concept both in terms of performance as well as construction costs. This study builds on the ongoing research at Portland State University into the development of …


Seismic Behavior And Design Of The Linked Column Steel Frame System For Rapid Return To Occupancy, Arlindo Pires Lopes Jul 2016

Seismic Behavior And Design Of The Linked Column Steel Frame System For Rapid Return To Occupancy, Arlindo Pires Lopes

Dissertations and Theses

The Linked Column Frame (LCF) is a new brace-free lateral structural steel system intended for rapid return to occupancy performance level. LCF is more resilient under a design level earthquake than the conventional approaches. The structural system consists of moment frames for gravity that combines with closely spaced dual columns (LC) interconnected with bolted links for the lateral system. The LC links are sacrificial and intended to be replaced following a design level earthquake. The centerpiece of this work was a unique full-scale experiment using hybrid simulation testing; a combination of physical test of a critical sub-system tied to a …


Seismic Retrofitting Of Existing Structures, Cetin Sahin Jan 2014

Seismic Retrofitting Of Existing Structures, Cetin Sahin

Civil and Environmental Engineering Master's Project Reports

This research project will give a brief presentation about earthquake resistant design and the methodology about seismic evaluation and rehabilitation of existing structures. It also provides certain aspects of computer software modeling against seismic loads and shows the necessity of seismic upgrading in a steel moment-frame building.

The seismic evaluation process consists of investigating if the structure meets the defined target structural performance levels. The main goal during earthquakes is to assure that building collapse doesn’t occur and the risk of death or injury to people is minimized and beyond that to satisfy post-earthquake performance level for defined range of …


Performance-Based Plastic Design And Energy-Based Evaluation Of Seismic Resistant Rc Moment Frame, Wen-Cheng Liao, Subhash C. Goel Jun 2012

Performance-Based Plastic Design And Energy-Based Evaluation Of Seismic Resistant Rc Moment Frame, Wen-Cheng Liao, Subhash C. Goel

Journal of Marine Science and Technology

This paper presents first time application of the Performance-Based Plastic Design (PBPD) approach to seismic resistant reinforced concrete special moment frames (RC SMF). Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline code designed frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. It turns out that the work-energy equation in PBPD to determine design base shear can also be used to estimate seismic demands, herein called the energy spectrum method. In summary, this …


Behaviour Of Reinforced Self-Consolidating Concrete Frames, Aly Said, Moncef Nehdi Apr 2007

Behaviour Of Reinforced Self-Consolidating Concrete Frames, Aly Said, Moncef Nehdi

Civil and Environmental Engineering and Construction Faculty Research

Multi-storey reinforced concrete (RC) structural frames represent some of the most congested structural elements. Placing and consolidating concrete in such structural frames imposes substantial challenges. This offers a unique area of application for self-consolidating concrete (SCC) because of its inherent ability to flow under its own weight and fill congested sections, complicated formwork and hard-to-reach areas. Research is, however, needed to demonstrate the ability of SCC structural frames adequately to resist vertical and lateral loads. In the present study, full-scale 3 m high beam-column joints reinforced as per the Canadian Standards CSA A23·3-94 and ACI-352R-02 were made with normal concrete …