Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Drug delivery

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 144

Full-Text Articles in Engineering

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb Jun 2024

Shape Memory Alloy Capsule Micropump For Drug Delivery Applications, Youssef Mohamed Kotb

Theses and Dissertations

Implantable drug delivery devices have many benefits over traditional drug administration techniques and have attracted a lot of attention in recent years. By delivering the medication directly to the tissue, they enable the use of larger localized concentrations, enhancing the efficacy of the treatment. Passive-release drug delivery systems, one of the various ways to provide medication, are great inventions. However, they cannot dispense the medication on demand since they are nonprogrammable. Therefore, active actuators are more advantageous in delivery applications. Smart material actuators, however, have greatly increased in popularity for manufacturing wearable and implantable micropumps due to their high energy …


Development Of An Electromagnetic System For Wireless Magnetic Manipulation Of Soft Capsule Endoscope For Drug Delivery Applications, Nada Ashraf Hussein Mahmoud Jan 2024

Development Of An Electromagnetic System For Wireless Magnetic Manipulation Of Soft Capsule Endoscope For Drug Delivery Applications, Nada Ashraf Hussein Mahmoud

Theses and Dissertations

Wireless capsule endoscopy (WCE) is a remarkable diagnostic device that examines the gastrointestinal (GI) tract. The WCE is a small capsule integrated with a camera that is used to visualize the inner mucosa of the GI tract. WCE has been proven to be the most effective method to diagnose GI diseases and GI cancers. The procedure reduces the discomfort and risk compared to conventional endoscopy methods. However, current WCEs lack the ability to take a biopsy or deliver a drug to a specific location. Those therapeutic functions can be introduced by wirelessly controlled WCEs. This thesis introduces an electromagnetic system …


A Novel Magnetorheological Pump Concept For Insulin Delivery, Mohammad Towhidul Islam Rimon Jan 2024

A Novel Magnetorheological Pump Concept For Insulin Delivery, Mohammad Towhidul Islam Rimon

Electronic Theses and Dissertations

Over the past 25 years, awareness of type 1 diabetes has significantly increased, leading to a comprehensive understanding of various aspects, including its genetics, epidemiology, and disease burden. According to the Type 1 Diabetic Index, about 8.7 million people around the world live with this long-term autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. However, the increased availability and utilization of artificial pancreas systems could potentially save 673,000 lives by 2040. Although, the advancement of diabetes technology offers Type 1 diabetic patients more tools to enhance glycemic management and achieve effective outcomes, many patients are still hesitant to adopt …


Systematic Development Of Ionizable Lipid Nanoparticles For Placental Mrna Delivery Using A Design Of Experiments Approach, Rachel E. Young, Katherine Nelson, Samuel I. Hofbauer, Tara Vijayakumar, Mohamad-Gabriel Alameh, Drew Weissman, Charalampos Papachristou, Jason P Gleghorn, Rachel S. Riley Dec 2023

Systematic Development Of Ionizable Lipid Nanoparticles For Placental Mrna Delivery Using A Design Of Experiments Approach, Rachel E. Young, Katherine Nelson, Samuel I. Hofbauer, Tara Vijayakumar, Mohamad-Gabriel Alameh, Drew Weissman, Charalampos Papachristou, Jason P Gleghorn, Rachel S. Riley

Henry M. Rowan College of Engineering Faculty Scholarship

Ionizable lipid nanoparticles (LNPs) have gained attention as mRNA delivery platforms for vaccination against COVID-19 and for protein replacement therapies. LNPs enhance mRNA stability, circulation time, cellular uptake, and preferential delivery to specific tissues compared to mRNA with no carrier platform. However, LNPs are only in the beginning stages of development for safe and effective mRNA delivery to the placenta to treat placental dysfunction. Here, we develop LNPs that enable high levels of mRNA delivery to trophoblasts in vitro and to the placenta in vivo with no toxicity. We conducted a Design of Experiments to explore how LNP composition, including …


Engineering Multifunctional Adhesive Hydrogel Patches For Biomedical Applications, Aishik Chakraborty, Shana Alexander, Wei Luo, Narisse Al-Salam, Mia Van Oirschot, Sudhir H. Ranganath, Subrata Chakrabarti, Arghya Paul Aug 2023

Engineering Multifunctional Adhesive Hydrogel Patches For Biomedical Applications, Aishik Chakraborty, Shana Alexander, Wei Luo, Narisse Al-Salam, Mia Van Oirschot, Sudhir H. Ranganath, Subrata Chakrabarti, Arghya Paul

Chemical and Biochemical Engineering Publications

Traditional patches, such as sticking plaster or acrylic adhesives used for over a hundred years, lack functionality. To address this issue of poor functionality, adhesive hydrogel patches have emerged as an efficient bioactive multifunctional alternative. Hydrogels are three-dimensional, water-swellable, and polymeric materials closely resembling the native tissue architecture. The physicochemical properties of hydrogels can be modified easily, allowing them to be suitable for various biomedical applications. Moreover, adhesive properties can be imparted to hydrogels through physicochemical manipulations, making them ideal candidates for supplementing or replacing traditional sticking plaster. As a result, sticky hydrogel patches are widely used for transdermal drug …


Drug Delivery On Mg-Mof-74: The Effect Of Drug Solubility On Pharmacokinetics, Neila Pederneira, Kyle Newport, Shane Lawson, Ali A. Rownaghi, Fateme Rezaei Jun 2023

Drug Delivery On Mg-Mof-74: The Effect Of Drug Solubility On Pharmacokinetics, Neila Pederneira, Kyle Newport, Shane Lawson, Ali A. Rownaghi, Fateme Rezaei

Chemical and Biochemical Engineering Faculty Research & Creative Works

Biocompatible metal-organic frameworks (MOFs) have emerged as potential nanocarriers for drug delivery applications owing to their tunable physiochemical properties. Specifically, Mg-MOF-74 with soluble metal centers has been shown to promote rapid pharmacokinetics for some drugs. In this work, we studied how the solubility of drug impacts the pharmacokinetic release rate and delivery efficiency by impregnating various amounts of ibuprofen, 5-fluorouracil, and curcumin onto Mg-MOF-74. The characterization of the drug-loaded samples via X-ray diffraction (XRD), N2 physisorption, and Fourier transform infrared (FTIR) confirmed the successful encapsulation of 30, 50, and 80 wt % of the three drugs within the MOF structure. …


Transport Phenomena With Reactions In Drug Delivery: Towards A Quantitative Description, Xianjie Qiu, Parthasakha Neogi May 2023

Transport Phenomena With Reactions In Drug Delivery: Towards A Quantitative Description, Xianjie Qiu, Parthasakha Neogi

Chemical and Biochemical Engineering Faculty Research & Creative Works

A Distributed System Called a Krogh Cylinder is Used Here to Quantify the Transport of a Solute from the Capillary into the Extravascular Tissue. the Capillary Network is Broken Down into Cylindrical Cells, Each Containing a Capillary and an Appropriate Amount of Extravascular Tissue. the Flow in the Cylinder Model Has Two-Dimensional Velocities, Which Are in the Axial and Radial Directions. All Parameters of the System, together with the Geometric Ones, Have Been Included in the Model. for a Given Bioavailability, the Uptakes of Reactive and Nonreactive Solutes Have Been Obtained. Very Large or Massive Molecules Have Been Considered. the …


Pamam- Cyclodextrin Conjugate Upregulates Brain-Derived Neurotropic Factor In Arpe-19 Cells, Gopika Ashokan Mar 2023

Pamam- Cyclodextrin Conjugate Upregulates Brain-Derived Neurotropic Factor In Arpe-19 Cells, Gopika Ashokan

USF Tampa Graduate Theses and Dissertations

Background: Traumatic Brain Injury (TBI) is a major contributor to death and disability due to motorvehicle accidents, sports, physical abuse, and battlefield injuries. The primary insult to the brain leads to inflammation, vascular dysfunction, and oxidative stress in the brain as well as in the eye. This leads to loss of Retinal Ganglion Cells (RGCs) and downregulation of Brain derived Neurotopic Factor (BDNF). BDNF is a neurotrophic factor that binds to Tropomyosin Receptor Kinase B (TrkB) receptor to promote cell growth, survival, and differentiation. Current treatment strategies do not promote neuronal regeneration. Therefore, novel treatments are needed to restore vision …


Developing Mesoporous Silica Nanoparticle-Based Stimuli-Responsive Nanocarriers For Delivery Of Small Molecule Therapeutics Against Colon Cancer Cells, Nisitha Lakmal Wellala Wijewantha Jan 2023

Developing Mesoporous Silica Nanoparticle-Based Stimuli-Responsive Nanocarriers For Delivery Of Small Molecule Therapeutics Against Colon Cancer Cells, Nisitha Lakmal Wellala Wijewantha

Dissertations and Theses

This dissertation delves into the innovative application of mesoporous silica nanoparticles (MSNs) for targeted drug delivery in colorectal cancer (CRC), one of the most prevalent and deadly forms of cancer worldwide. The initial focus of the research is on developing enzyme-responsive MSNs loaded with veratridine (VTD), an alkaloid derived from natural sources that demonstrates potent anticancer activity. The nanoparticles have been engineered to deliver VTD selectively to CRC cells, releasing the payload upon being exposed to specific enzymes primarily secreted by these cells. This strategy has dual advantages of amplifying the anticancer effects while minimizing potential side effects on healthy …


Engineer And Test A Biodegradable Microneedle Patch To Deliver Meloxicam For Managing Pain In Cattle, Katherine Alejandra Miranda Munoz Dec 2022

Engineer And Test A Biodegradable Microneedle Patch To Deliver Meloxicam For Managing Pain In Cattle, Katherine Alejandra Miranda Munoz

Graduate Theses and Dissertations

Microneedle patches are a promising source for transdermal diffusion of macromolecules and are designed to painlessly penetrate the skin. In this study, a biodegradable chitosan microneedle patch to deliver meloxicam for managing pain in cattle was tested. The potential of reuse of the polymeric solution to fabricate the patches, optimization of fabrication, morphological analysis of the microneedle patch and analysis of preservation of the chemical composition after sterilization were evaluated. In-vitro analysis consisted of studying in-vitro penetration mechanical properties, compression testing analysis of microneedle patch, and in-vitro drug release analysis. In-vivo studies were performed to analyze the dissolution capability of …


An Integrated Electronic-Skin Patch For Real-Time And Continuous Monitoring Of A Panel Of Biomarkers Combined With Drug Delivery, Tanzila Noushin Dec 2022

An Integrated Electronic-Skin Patch For Real-Time And Continuous Monitoring Of A Panel Of Biomarkers Combined With Drug Delivery, Tanzila Noushin

Electrical Engineering Theses

Inflammatory biomarkers present in the human body play a vital role in medical field by guiding the clinician in decision-making for many diseases. The levels of these inflammatory biomarkers are associated with the severity and progress of several diseases. Researchers have found that increasing severity of many diseases such as cardiovascular disease, after surgery infection, and adverse clinical outcomes due to infectious diseases, results in the elevation of the level of inflammatory biomarkers in human sweat. Furthermore, the inflammatory cytokines indicate the pathophysiology and prognosis of critically ill SARS‑CoV‑2 patients. In this thesis work, different sensors have been developed for …


Fabrication And Characterization Of Force Spun Polymeric Nanofiber For Drug Delivery And Tissue Engineering Applications, Salahuddin Ahmed Dec 2022

Fabrication And Characterization Of Force Spun Polymeric Nanofiber For Drug Delivery And Tissue Engineering Applications, Salahuddin Ahmed

Theses and Dissertations

This study focuses on the development and characterization of polymeric nanofiber for drug delivery and tissue engineering applications. In this study, poly(lactic-co-glycolic) acid (PLGA), Poly-vinyl alcohol (PVA), and Pullulan(PL) were used as the base polymers to develop the nanofiber. Bioactive components Oleanolic acid(OA), Oxymatrine(OM), and Salvianolic Acid(SA) were incorporated in PLGA, PVA, and PL, respectively, via solution mixing. The nano fiber systems were developed using the Forcespinning® method. Morphological, thermo-physical, and biological properties of the fiber mats were analyzed. The composite fiber system containing OA showed a very high drug loading efficiency. The composite fiber system containing high concentration of …


Electromechanical Effects On Micro And Nano Particles Generated From Drug Delivery Devices And Their Implications In Flow And Deposition Efficiency, Mohammed Ali, Mark Miller Nov 2022

Electromechanical Effects On Micro And Nano Particles Generated From Drug Delivery Devices And Their Implications In Flow And Deposition Efficiency, Mohammed Ali, Mark Miller

Technology Faculty Publications and Presentations

This experimental investigation was undertaken to quantify the electrostatic charge and aerodynamic size distribution of the medicinal drug particles inhaled through an in-vitro mouth-throat (MT) in order to compare the amount of drugs can be delivered to the human lung while mimicking a patient is either sitting or lying. The MT model is a cadaver-based replica cast of human oral-pharyngeal-laryngeal region. Tested drug aerosols were generated by a commercially available metered dose inhaler (MDI). The MT model was placed inside a humidity (95%) and temperature (37oC) controlled chamber. Its mouth-inlet was positioned horizontally and vertically to simulate sitting …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Conducting Polypyrrole Hydrogel Biomaterials For Drug Delivery And Cartilage Tissue Regeneration, Iryna Liubchak Aug 2022

Conducting Polypyrrole Hydrogel Biomaterials For Drug Delivery And Cartilage Tissue Regeneration, Iryna Liubchak

Electronic Thesis and Dissertation Repository

Articular cartilage tissue has limited capacity for self-regeneration leading to challenges in the treatment of joint injuries and diseases such as osteoarthritis. The tissue engineering approach combines biomaterials, cells and bioactive molecules to provide a long-term and stable cartilage repair. In the following work, electroactive polymer polypyrrole~(PPy) was incorporated into the synthetic hydrogel to enhance the mechanical properties of the material for cartilage applications. PPy was loaded with drug compound and the \emph{on demand} drug release was demonstrated. The composite PPy hydrogel was 3D printed using stereolithography to create a porous tissue engineering scaffold. Biocompatibility and cell adhesion to the …


Nonordered Dendritic Mesoporous Silica Nanoparticles As Promising Platforms For Advanced Methods Of Diagnosis And Therapies, S. Malekmohammadi, Riaz Ur Rehman Mohammed, H. Samadian, A. Zarebkohan, A. García-Fernández, G.R. Kokil, F. Sharifi, J. Esmaeili, M. Bhia, M. Razavi, M. Bodaghi, T. Kumeria, R. Martínez-Máñez Aug 2022

Nonordered Dendritic Mesoporous Silica Nanoparticles As Promising Platforms For Advanced Methods Of Diagnosis And Therapies, S. Malekmohammadi, Riaz Ur Rehman Mohammed, H. Samadian, A. Zarebkohan, A. García-Fernández, G.R. Kokil, F. Sharifi, J. Esmaeili, M. Bhia, M. Razavi, M. Bodaghi, T. Kumeria, R. Martínez-Máñez

Department of Chemical and Biomolecular Engineering: Faculty Publications

Dendritic mesoporous silica nanoparticles (DMSNs) are a new generation of porous materials that have gained great attention compared to other mesoporous silicas due to attractive properties, including straightforward synthesis methods, modular surface chemistry, high surface area, tunable pore size, chemical inertness, particle size distribution, excellent biocompatibility, biodegradability, and high pore volume compared with conventional mesoporous materials. The last years have witnessed a blooming growth of the extensive utilization of DMSNs as an efficient platform in a broad spectrum of biomedical and industrial applications, such as catalysis, energy harvesting, biosensing, drug/gene delivery, imaging, theranostics, and tissue engineering. DMSNs are considered great …


Developing And Characterizing A Novel Tempo Cnf Hydrogel Adjuvant And Delivery System For Aquatic Vaccines, Kora Kukk Aug 2022

Developing And Characterizing A Novel Tempo Cnf Hydrogel Adjuvant And Delivery System For Aquatic Vaccines, Kora Kukk

Electronic Theses and Dissertations

Aquaculture is a large part of the food production sector which is greatly expanding. One of the largest losses in aquaculture is due to pathogens. Current solutions for protecting farmed finfish from pathogens can be very expensive with variable efficiency. Current disease prevention strategies include vaccination. Types of vaccines include immersion vaccines, feed vaccines, and injectable vaccines. The most popular solution is oil-based injectable vaccines due to its protection. However, the oil-based adjuvant used in most of these formulations causes adverse reactions in the fish including reduced growth. These vaccines require multiple administrations throughout the fish’s lifetime causing unwanted handling …


Electrospray Deposition Of Polyvinylidene Fluoride (Pvdf) Microparticles: Impact Of Solvents And Flow Rate, Akinwunmi Joaquim, Omari Paul, Michael Ibezim, Dewayne Johnson, April Falconer, Ying Wu, Frances Williams, Richard Mu Jul 2022

Electrospray Deposition Of Polyvinylidene Fluoride (Pvdf) Microparticles: Impact Of Solvents And Flow Rate, Akinwunmi Joaquim, Omari Paul, Michael Ibezim, Dewayne Johnson, April Falconer, Ying Wu, Frances Williams, Richard Mu

TIGER Institute Faculty Research

Polymeric microparticles have been shown to have great impacts in the area of drug delivery, biosensing, and tissue engineering. Electrospray technology, which provides a simple yet effective technique in the creation of microparticles, was utilized in this work. In addition, altering the electrospray experimental parameters such as applied voltage, flow rate, collector distance, solvents, and the polymer-solvent mixtures can result in differences in the size and morphology of the produced microparticles. The effects of the flow rate at (0.15, 0.3, 0.45, 0.6, 0.8, and 1 mL/h) and N, N-Dimethylformamide (DMF)/acetone solvent ratios (20:80, 40:60, 60:40, 80:20, 100:0 v/v) in the …


Engineering Hydrogels For Delivery Of Therapeutic Proteins, Francesca Briggs, Daryn Browne Jun 2022

Engineering Hydrogels For Delivery Of Therapeutic Proteins, Francesca Briggs, Daryn Browne

Bioengineering Senior Theses

In this project, we investigate how innate hydrogel properties can be leveraged for controlled protein drug release platforms. Therapeutic proteins have many valuable applications within the medical field, however, professionals often face many obstacles with obtaining controlled drug release. This paper analyzes how the manipulation of hydrogel properties can improve protein drug release rates. We started these investigations by varying hydrogel concentrations since we saw that this affects the release of small molecules. Additionally, we wanted to see what the addition of a second hydrogel network would do to protein release rates. These experiments concluded that raising polymer concentrations and …


Nanoparticulate Carriers For Drug Delivery, Samantha Lokelani Crossen, Tarun Goswami Apr 2022

Nanoparticulate Carriers For Drug Delivery, Samantha Lokelani Crossen, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

Drug delivery with nanoparticulate carriers is a new and upcoming research area that is making major changes within the pharmaceutical industry. Nanoparticulate carriers are discussed, particularly, engineered nanoparticulate carriers used as drug delivery systems for targeted delivery. Nanoparticulate carriers that are used for drug delivery systems include polymers, micelles, dendrimers, liposomes, ceramics, metals, and various forms of biological materials. The properties of these nanoparticulate carriers are very advantageous for targeted drug delivery and result in efficient drug accumulation at the targeted area of interest, reduced drug toxicity, reduced systemic side effects, and more efficient use of the drug overall. Nanoparticlulate …


Investigation Of Cell Derived Nanoparticles For Drug Delivery And Osteogenic Differentiation Of Human Stem/Stromal Cells, Shruthi Polla Ravi Apr 2022

Investigation Of Cell Derived Nanoparticles For Drug Delivery And Osteogenic Differentiation Of Human Stem/Stromal Cells, Shruthi Polla Ravi

Electronic Thesis and Dissertation Repository

The successful repair of bone defects and injuries is enhanced by the delivery of osteoinductive factors, such as drugs, growth factors, and genetic material that can promote the osteogenic differentiation of stem/stromal cells into osteoblasts. Nanoparticle delivery systems are being studied to enable the sustained release of these factors but suffer from limitations such as cytotoxicity issues, poor loading capacity, and poor cellular uptake. In this project, we developed cell-derived nanoparticles (CDNs), a biomimetic nanoparticle delivery system with high drug loading efficiency, to deliver a glucocorticoid drug, dexamethasone (Dex), to promote the osteogenic differentiation of stem/stromal cells. The synthesized Dex-loaded …


Editorial For Gels 6th Anniversary Special Issue, Esmaiel Jabbari, Gulden Camci-Unal Apr 2022

Editorial For Gels 6th Anniversary Special Issue, Esmaiel Jabbari, Gulden Camci-Unal

Faculty Publications

Note: In lieu of an abstract, this is an excerpt from the first page.


This Special Issue celebrates many outstanding quality papers published in Gels over the past six years since its first issue was published in 2015 [...]


Novel Stimuli-Responsive Pectin-Pvp-Functionalized Clay Based Smart Hydrogels For Drug Delivery And Controlled Release Application, Shabnam Rehmat, Nayab Batool Rizvi, Saba Urooge Khan, Abdul Ghaffar, Atif Islam, Rafi Ullah Khan, Azra Mehmood, Hira Butt, Muhammad Rizwan Feb 2022

Novel Stimuli-Responsive Pectin-Pvp-Functionalized Clay Based Smart Hydrogels For Drug Delivery And Controlled Release Application, Shabnam Rehmat, Nayab Batool Rizvi, Saba Urooge Khan, Abdul Ghaffar, Atif Islam, Rafi Ullah Khan, Azra Mehmood, Hira Butt, Muhammad Rizwan

Michigan Tech Publications

Stimuli-responsive drug delivery systems are urgently required for injectable site-specific delivery and release of drugs in a controlled manner. For this purpose, we developed novel pH-sensitive, biodegradable, and antimicrobial hydrogels from bio-macromolecule pectin, polyvinylpyrrolidone (PVP), 3-aminopropyl (diethoxy)methyl silane (3-APDEMS), and sepiolite clay via blending and solution casting technique. The purified sepiolite (40 um) was functionalized with 3-APDEMS crosslinker (ex-situ modification) followed by hydrogels fabrication. FTIR and SEM confirmed crosslinked structural integrity and rod-like morphology of hydrogels respectively. The swelling properties of hydrogels could be controlled by varying the concentration of modified clay in pectin/PVP blends. Moreover, the decrease in pH …


Exploiting The Sars-Cov-2 Spike Protein Components To Guide Molecular Level Entry Of A Bag-1 Inhibitor In The Treatment Of Breast And Lung Cancers, Malak Yasin, Michael Peters, Mo Jiang Jan 2022

Exploiting The Sars-Cov-2 Spike Protein Components To Guide Molecular Level Entry Of A Bag-1 Inhibitor In The Treatment Of Breast And Lung Cancers, Malak Yasin, Michael Peters, Mo Jiang

Summer REU Program

Chemoresistance of lung cancer cells is the primary reason as to why limitations occur with cancer treatments. A protein, known as BAG-1 is responsible for many cellular activities including cellular stress response, cell growth, and apoptosis (regulated cell death). When overexpressed, the protein has been linked to the anti-apoptotic behavior of cancer cells. BAG-1 can combine to heat shock proteins (HSPs), a family of helical molecular chaperones that are known to aid in the maturation of proteins, refolding, and degradation. This response plays a crucial role in the study of chemoresistance in cancer patients due to its detrimental nature. Prior, …


Transdermal Drug Delivery Systems: Analysis Of Adhesion Failure, Zachary Brooks, Tushar Goswami, Amy Neidhard-Doll, Tarun Goswami Jan 2022

Transdermal Drug Delivery Systems: Analysis Of Adhesion Failure, Zachary Brooks, Tushar Goswami, Amy Neidhard-Doll, Tarun Goswami

Biomedical, Industrial & Human Factors Engineering Faculty Publications

The most critical component of the TDDS is the adhesive, which is responsible for the safety, efficacy and quality of the patch. For drug delivery to successfully occur, the patch must adhere to the surface of the contact area. If a patch has inadequate adhesion, it is likely to fall off before the entire delivery period has been satisfied, leading to risks for the patient and others who may encounter the patch. Despite the critical concerns associated with the adhesive properties of the patches, the adhesion quality and failure mechanisms have not been fully studied. If certain molecules encounter the …


Enhanced Anticancer Response Of Curcumin- And Piperine-Loaded Lignin-G-P (Nipam-Co-Dmaema) Gold Nanogels Against U-251 Mg Glioblastoma Multiforme, Bilal Javed, Xinyi Zhao, Daxiang Cui, James Curtin, Furong Tian Oct 2021

Enhanced Anticancer Response Of Curcumin- And Piperine-Loaded Lignin-G-P (Nipam-Co-Dmaema) Gold Nanogels Against U-251 Mg Glioblastoma Multiforme, Bilal Javed, Xinyi Zhao, Daxiang Cui, James Curtin, Furong Tian

Articles

Glioblastoma multiforme (GBM) is the most aggressive and commonly diagnosed brain cancer and is highly resistant to routine chemotherapeutic drugs. The present study involves the synthesis of Lignin-g-p (NIPAM-co-DMAEMA) gold nanogel, loaded with curcumin and piperine, to treat GBM. The ongoing study has the application potential to (1) overcome the limitations of drugs biodistribution, (2) enhance the toxicity of anticancer drugs against GBM, and (3) identify the drugs uptake pathway. Atom transfer radical polymerization was used to synthesize the Lignin-g-PNIPAM network, crosslinked with the gold nanoparticles (GNPs) to self-assemble into nanogels. The size distribution and morphological analysis confirmed that the …


Effect Of Ultrasound Pressure On The Distribution Of Bovine Serum Albumin Delivered By Focused Ultrasound-Mediated Blood-Brain Barrier Opening In Cleared Mouse Brains, Yajie Liu Aug 2021

Effect Of Ultrasound Pressure On The Distribution Of Bovine Serum Albumin Delivered By Focused Ultrasound-Mediated Blood-Brain Barrier Opening In Cleared Mouse Brains, Yajie Liu

McKelvey School of Engineering Theses & Dissertations

Most common diagnosis and therapeutic methods have low effectiveness when used on brain diseases. The key obstacle is that the blood-brain barrier (BBB) prevents most drugs from entering the brain. Some strategies have been developed to improve the efficiency of drug delivery crossing BBB. Among all these strategies, focused ultrasound-mediated BBB opening (FUS-BBB Opening) stands out since it is noninvasive and can be located to the target area. Detailed studies are required on the distribution of drugs delivered by FUS-BBB opening and the effects of FUS parameters on the distribution. This thesis proposes a pipeline involving tissue clearing and lightsheet …


Development Of Multifunctional Drug Delivery Systems For Locoregional Therapy, Xinyi Li Jul 2021

Development Of Multifunctional Drug Delivery Systems For Locoregional Therapy, Xinyi Li

Electronic Thesis and Dissertation Repository

Locoregional treatment is the specific delivery of therapeutics to their desired sites of action with minimized systemic adverse effects. In this approach, drug is administered through topical instillation, inhalation, intra-lesional or intra-arterial injection. Decades of experience in locoregional treatment have delivered meaningful benefits to patients with localized diseases (e.g., osteoarthritis, ocular disorders and liver cancers). However, improvements are required for this type of treatment to be more effective. For transarterial chemoembolization (TACE) therapy of hepatocellular carcinoma (HCC), the most current approaches do not allow repeat treatment as the drug delivery vehicle is not degradable. In addition, image contrast agents for …


The Development Of Novel Carbohydrate-Based Gelators And Their Applications As Advanced Soft Materials, Joedian Morris Jul 2021

The Development Of Novel Carbohydrate-Based Gelators And Their Applications As Advanced Soft Materials, Joedian Morris

Chemistry & Biochemistry Theses & Dissertations

Low molecular weight gelators (LMWGs) are attractive molecules that have been explored extensively due to their practical applications in many disciplines. These small molecules self-assemble forming solid-like gels via three-dimensional cross-linked networks with the solvent as the key component within the matrix. Carbohydrate-based LMWGs are small molecules that can form solid-like gels in water, organic solvents, and aqueous solutions. They have great potential to be utilized in different applications because carbohydrates are biocompatible and can be made from easily accessible and renewable resources. Designing gelators is still a challenge within the field, even though researchers have developed tools to predict …


Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango Jun 2021

Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango

Doctoral Dissertations

Protein drugs, including antibodies, are rapidly emerging as the top-selling pharmaceuticals worldwide owing to their unparalleled specificity and biocompatibility. However, none of the currently-approved protein therapeutics act intracellularly, despite the vast majority of potential drug targets residing within the cell. This is due mainly to the paramount challenge of transporting hydrophilic macromolecular cargoes across the plasma membrane. As such, effective protein carriers are essential for the advancement of modern medicine. Despite significant advances, many challenges still plague protein delivery. Following membrane transduction, delivery vectors must preserve the structure and activity of their cargoes while transporting them to the correct subcellular …