Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Strengthening Urban Resilience: Understanding The Interdependencies Of Outer Space And Strategic Planning For Sustainable Smart Environments, Ulpia-Elena Botezatu, Olga Bucovetchi, Adrian V. Gheorghe, Radu D. Stanciu Jan 2023

Strengthening Urban Resilience: Understanding The Interdependencies Of Outer Space And Strategic Planning For Sustainable Smart Environments, Ulpia-Elena Botezatu, Olga Bucovetchi, Adrian V. Gheorghe, Radu D. Stanciu

Engineering Management & Systems Engineering Faculty Publications

The conventional approach to urban planning has predominantly focused on horizontal dimensions, disregarding the potential risks originating from outer space. This paper aims to initiate a discourse on the vertical dimension of cities, which is influenced by outer space, as an essential element of strategic urban planning. Through an examination of a highly disruptive incident in outer space involving a collision between the Iridium 33 and Cosmos 2251 satellites, this article elucidates the intricate interdependencies between urban areas and outer space infrastructure and services. Leveraging the principles of critical infrastructure protection, which bridge the urban and outer space domains, and …


Project Atlas: A Mobile Universal Rocket Engine Test Stand, Collin Mickels, Conrad H. Wright, Noah Soderquist, Alona Prokofieva, Sattar Panahandehgar, Naveen Sri Uddanti, Alcuin Rajan Jan 2019

Project Atlas: A Mobile Universal Rocket Engine Test Stand, Collin Mickels, Conrad H. Wright, Noah Soderquist, Alona Prokofieva, Sattar Panahandehgar, Naveen Sri Uddanti, Alcuin Rajan

Student Works

Project Atlas is a mobile, trailer-mounted, rocket engine test stand developed by Experimental Rocket Propulsion Lab (ERPL) at Embry-Riddle Aeronautical University’s Daytona Beach, Florida campus. The integrated test stand and automated data-acquisition and control system supports ERPL’s multitude of engine research projects, including bipropellant liquid and hybrid rocket engines. The need for an integrated universal mobile test stand stems from the inability to conduct frequent test fires on campus due to Class-3 airspace and liability issues. The test stand is designed as a horizontal thrust structure utilizing a dual flame duct to redirect and cancel reaction forces acting upon the …


Numerical Algorithm For Wing-Structure Design, Jeffrey D. Taylor, Douglas F. Hunsaker, James J. Joo Jan 2018

Numerical Algorithm For Wing-Structure Design, Jeffrey D. Taylor, Douglas F. Hunsaker, James J. Joo

Mechanical and Aerospace Engineering Student Publications and Presentations

Low-fidelity aerostructural optimization routines have often focused on determining the optimal spanloads for a given wing configuration. Several analytical approaches have been developed that can predict optimal lift distributions on rectangular wings with a specific payload distribution. However, when applied to wings of arbitrary geometry and payload distribution, these approaches fail. Increasing the utility and accuracy of these analytical methods can result in important benefits during later design phases. In this paper, an iterative algorithm is developed that uses numerical integration to predict the distribution of structural weight required to support the bending moments on a wing with arbitrary geometry …


Cockpit In The Systems Engineering Lenses, Aysen K. Taylor, Charles B. Keating, T. Steven Cotter Jan 2017

Cockpit In The Systems Engineering Lenses, Aysen K. Taylor, Charles B. Keating, T. Steven Cotter

Engineering Management & Systems Engineering Faculty Publications

The commercial transport aircraft of today vary greatly from early aircraft in regards to how they are controlled and the feedback provided from the machine to the human operator. Automation has improved operational precision and efficiency but at the cost of providing less feedback. Pilots are the last line of defense and current technology cannot provide the human ability to solve novel problems for which no computer logic can be written. The automated cockpits of today have may sub-components that interact in a manner often opaque and unpredictable when a sensor or sub-component fails or even in situations where no …


Unmanned Aerial Vehicle (Uav) Propulsion Research: Conceptual Studies Of “Ultra-Compact Shaft-Less Jet Engines” For Next Generation Uavs, Tyler Eiguren, Trevor Douglas, Tre Buchanan Apr 2015

Unmanned Aerial Vehicle (Uav) Propulsion Research: Conceptual Studies Of “Ultra-Compact Shaft-Less Jet Engines” For Next Generation Uavs, Tyler Eiguren, Trevor Douglas, Tre Buchanan

Publications

Unmanned Aerial Vehicles are becoming more commonly used in today’s society, ranging anywhere from military applications to entertainment for enthusiasts and hobbyists. The complexity of current generation UAV’s propulsive devices, based upon a scaled turbine engine and separate gas & electrically powered rotating fan blades, require regular maintenance for every 24 hours of flight. This added cost coupled with necessary intricate machinery deters UAV designers from such engines, leaving a void in current production. Our research team believes that by combining a simplified alternative compression & combustion process with an electrically driven fan, we can develop an energy efficient, reliable, …


Mechanical Design Of Pird (Principal Investigator Rack Drawer) For Sofia, Hari Prasad Shetty Mr., Murali Krishna Kandlagunta Mrs., John Miles Mr., Zaheer Ali Mr. Aug 2013

Mechanical Design Of Pird (Principal Investigator Rack Drawer) For Sofia, Hari Prasad Shetty Mr., Murali Krishna Kandlagunta Mrs., John Miles Mr., Zaheer Ali Mr.

STAR Program Research Presentations

SOFIA, the world’s largest airborne observatory with 2.5-meter diameter infrared telescope is equipped with 7 instruments: EXES, FIFI-LS, FLITECAM, FORCAST, GREAT, HAWC, and HIPO. Flying at altitudes between 39,000 and 45,000 feet, SOFIA avoids 99% of the atmospheric water vapor, records and analyzes the infrared radiation from the cosmos. SOFIA is able to observe the occultation of stars by solar system objects. By determining the size, compositions, and atmospheric structures of these objects, SOFIA can help answer the questions on creation and evolution of the universe, formation of the stars and planets, and nature of black hole at the center …