Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Core-shell

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Synthesis Of Monodisperse Nanoscintillators At High Temperatures For Biomedical Relevant Applications, Eric Zhang May 2022

Synthesis Of Monodisperse Nanoscintillators At High Temperatures For Biomedical Relevant Applications, Eric Zhang

All Dissertations

Luminescent sub-100 nm particulates continuously generate immense research interest in the biomedical field for imaging, theranostics, and optogenetics. Conventionally, upconversion nanoparticles or UV activated semiconductors are studied, however these materials are limited by biological barriers such as the skin which reduces the penetration depth of these excitation sources, tissue's auto- fluorescence, and toxicity. One approach to overcome these challenges is to use nanoscintillators (sub-100 nm materials that can generate visible light using high energy excitation sources such as x-rays) which can generate light locally to the human body. Numerous scintillators have been reported since the discovery of x-rays from the …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Palladium Adatoms On Gold Nanoparticles As Electrocatalysts For Ethanol Electro-Oxidation In Alkaline Solutions, Hui-Mei Chen, Shang-Qian Zhu, Jia-Le Huang, Min-Hua Shao Dec 2018

Palladium Adatoms On Gold Nanoparticles As Electrocatalysts For Ethanol Electro-Oxidation In Alkaline Solutions, Hui-Mei Chen, Shang-Qian Zhu, Jia-Le Huang, Min-Hua Shao

Journal of Electrochemistry

Palladium (Pd) is a good catalyst for ethanol electro-oxidation in alkaline solutions. The activity of Pd is further improved in this study by modifying the gold (Au) nanoparticles with Pd adatoms using a simple spontaneous deposition process. The Pd overlayer on the Au core (Au@Pd) is un-uniform with some Au atoms exposed to the electrolyte. The activity of Au@Pd/C toward ethanol oxidation reaction (EOR) is much higher than that of Pd/C in an alkaline solution. The peak current density of Au@Pd/C is 4.6 times higher than that of Pd/C with a 100 mV lower onset potential. The enhanced activity may …


Reaction Mechanism For Oxygen Evolution On Ruo2, Iro2, And Ruo2@Iro2 Core-Shell Nanocatalysts, Julie N. Renner Jun 2018

Reaction Mechanism For Oxygen Evolution On Ruo2, Iro2, And Ruo2@Iro2 Core-Shell Nanocatalysts, Julie N. Renner

Faculty Scholarship

Iridium dioxide, IrO2, is second to the most active RuO2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. To improve the activity of IrO2-based catalysts, we prepared RuO2@IrO2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO2@IrO2 is threefold that of IrO2. While the activity volcano plots over wide range of materials have been reported, zooming into the top region to clarify the rate limiting steps of most active catalysts is important for further activity enhancement. Here, …


Engineering Zeolite Catalysts Through Porosity And Surface Acidity Control For Selective Production Of Light Olefins, Xin Li Jan 2018

Engineering Zeolite Catalysts Through Porosity And Surface Acidity Control For Selective Production Of Light Olefins, Xin Li

Doctoral Dissertations

"Zeolites are broadly used as heterogeneous catalysts in various chemical and petrochemical industries to produce value-added chemicals and fuels, mainly due to their large surface area, acid-base properties, high thermal stability, and excellent shape-selectivity. In this dissertation, various zeolite catalysts were engineered through fine-tuning micro-meso-macro-porosity and surface acidity. The engineered zeolites were used as heterogeneous catalysts for production of light olefins such as ethylene and propylene through alcohol dehydration and hydrocarbon cracking reactions.

To control the zeolite porosity and acidity, SAPO-34@ZSM-5 and SAPO-34@Silicalite-1 composites with core-shell structure were synthesized and evaluated in ethanol dehydration reaction. Analysis of catalytic performance revealed …


Formation Of Aggregated Nanoparticle Spheres Through Femtosecond Laser Surface Processing, Alfred T. Tsubaki, Mark A. Koten, Michael J. Lucis, Craig Zuhlke, Natale J. Ianno, Jeffrey E. Shield, Dennis R. Alexander Jan 2017

Formation Of Aggregated Nanoparticle Spheres Through Femtosecond Laser Surface Processing, Alfred T. Tsubaki, Mark A. Koten, Michael J. Lucis, Craig Zuhlke, Natale J. Ianno, Jeffrey E. Shield, Dennis R. Alexander

Department of Electrical and Computer Engineering: Faculty Publications

A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20–100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused …


Pathways To Ultra-Low Platinum Group Metal Catalyst Loading In Proton Exchange Membrane Electrolyzers, Julie N. Renner Mar 2016

Pathways To Ultra-Low Platinum Group Metal Catalyst Loading In Proton Exchange Membrane Electrolyzers, Julie N. Renner

Faculty Scholarship

Hydrogen is one of the world's most important chemicals, with global production of about 50 billion kg/year. Currently, hydrogen is mainly produced from fossil fuels such as natural gas and coal, producing CO2. Water electrolysis is a promising technology for fossil-free, CO2-free hydrogen production. Proton exchange membrane (PEM)-based water electrolysis also eliminates the need for caustic electrolyte, and has been proven at megawatt scale. However, a major cost driver is the electrode, specifically the cost of electrocatalysts used to improve the reaction efficiency, which are applied at high loadings (>3 mg/cm2 total platinum group metal (PGM) content). Core-shell catalysts …


Tailoring Optical And Plasmon Resonances In Core-Shell And Core-Multishell Nanowires, Sarath Ramadurgam Jan 2016

Tailoring Optical And Plasmon Resonances In Core-Shell And Core-Multishell Nanowires, Sarath Ramadurgam

Open Access Dissertations

Semiconductor nanowires (NWs) are sub-wavelength structures which exhibit strong optical (Mie) resonances in the visible range. In addition to such optical resonances, the localized surface plasmon resonances (LSPR) in metal and semiconductor (or dielectric) based core-shell (CS) and core-multishell (CMS) NWs can be tailored to achieve novel negative-index metamaterials (NIM), extreme absorbers, invisibility cloaks and sensors. Particularly, in this dissertation, the versatility of CS and CMS NWs for the design of negative-index metamaterials in the visible range and, plasmonic light harvesting in ultrathin photocatalyst layers for water splitting are studied.

Utilizing the LSPR in the metal layer and the magnetic …


Synthesis Of Mono-Disperse Cofe Alloy Nanoparticles With High Activity Toward Nabh4 Hydrolysis, Cun Wen, Xin Zhang, Samuel Lofland, Jochen Lauterbach, Jason Hattrick-Simpers Mar 2015

Synthesis Of Mono-Disperse Cofe Alloy Nanoparticles With High Activity Toward Nabh4 Hydrolysis, Cun Wen, Xin Zhang, Samuel Lofland, Jochen Lauterbach, Jason Hattrick-Simpers

Jason R. Hattrick-Simpers

No abstract provided.


Thin 3d Multiplication Regions In Plasmonically Enhanced Nanopillar Avalanche Detectors, Pradeep Senanayake, Chung-Hong Hung, Alan C. Farrell, David A. Ramirez, Joshua Shapiro, Chi-Kang Li, Yuh-Renn Wu, Majeed M. Hayat, Diana L. Huffaker Dec 2012

Thin 3d Multiplication Regions In Plasmonically Enhanced Nanopillar Avalanche Detectors, Pradeep Senanayake, Chung-Hong Hung, Alan C. Farrell, David A. Ramirez, Joshua Shapiro, Chi-Kang Li, Yuh-Renn Wu, Majeed M. Hayat, Diana L. Huffaker

Electrical and Computer Engineering Faculty Research and Publications

We demonstrate a nanopillar (NP) device structure for implementing plasmonically enhanced avalanche photodetector arrays with thin avalanche volumes (∼ 310 nm × 150 nm × 150 nm). A localized 3D electric field due to a core–shell PN junction in a NP acts as a multiplication region, while efficient light absorption takes place via surface plasmon polariton Bloch wave (SPP-BW) modes due to a self-aligned metal nanohole lattice. Avalanche gains of ∼216 at 730 nm at −12 V are obtained. We show through capacitance–voltage characterization, temperature-dependent breakdown measurements, and detailed device modeling that the avalanche region is on the order of …


High Performance Zno Varistors Prepared From Nanocrystalline Precursors For Miniaturised Electronic Devices, Suresh Pillai, Declan Mccormack, John Kelly, Raghavendra Ramesh Jan 2008

High Performance Zno Varistors Prepared From Nanocrystalline Precursors For Miniaturised Electronic Devices, Suresh Pillai, Declan Mccormack, John Kelly, Raghavendra Ramesh

Articles

An industrially viable solution-based processing route using minimal amounts of solvent has been used to prepare bulk quantity nanopowders (average particle size 15.3 nm) for the fabrication of ZnO varistors. The xerogels, calcined powders and sintered materials were fully characterised. The preparation of varistors from nanopowders has been optimised by studying the effect of temperature on grain growth, densification and breakdown voltage. The varistors are prepared by sintering at 1050 C for 2 hours, a temperature that is significantly lower than that used in the current industrial process. Highly dense varistor discs prepared from the sintered material produce devices, with …


Template Synthesis And Electrochemical Studies Of Ag_(Core)Au_(Shell) Nanowires, Li Ling, Ya-Xian Yuan, Min-Min Xu, Jian-Lin Yao, Ren-Ao Gu May 2007

Template Synthesis And Electrochemical Studies Of Ag_(Core)Au_(Shell) Nanowires, Li Ling, Ya-Xian Yuan, Min-Min Xu, Jian-Lin Yao, Ren-Ao Gu

Journal of Electrochemistry

Agcore Aushell nanowires with different thicknesses were prepared by combining template synthesis and chemical reduction method,and characterized by SEM and cyclic voltammetry(CV).The CV results revealed that the AgcoreAushell nanowires with pinhole were transferred to pinhole free structure after several potential scans.By using thiophenol(TP)and p-aminothiophenol(PATP)as probe,the surface enhanced Raman scattering(SERS)effect was investigated on the core-shell nanowires.The results indicated that AgcoreAushell nanowires could be served as a potential SERS substrate,and the difference in the spectral feature of PATP adsorbed onto Au and Ag nanowires enable us to diagnose the pinhole effect of core-shell nanowires by SERS.


Fabrication Of Core-Shell Nanoparticles, Zhanhu Guo Jan 2005

Fabrication Of Core-Shell Nanoparticles, Zhanhu Guo

LSU Doctoral Dissertations

Metallic Cu and Au shells were fabricated around cobalt nanoparticles. A new technique to coat nanoparticles with carbon coatings and poly(methyl methacrylate) (PMMA) was developed. The copper shell formation is a self-limiting process. A thin copper shell (0.82 nm) around the cobalt nanoparticle (1.56 nm) enhanced the magnetic property by increasing the blocking temperature from 124 K to 235 K for nanoparticles with a copper shell. The formed gold shell (0.67 nm) enhanced the cobalt nanoparticle magnetic property by increasing the blocking temperature above room temperature. The magnetic moment in the Co-Cu and Co-Au core-shell nanoparticle is much higher than …