Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Biomass

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 91 - 120 of 241

Full-Text Articles in Engineering

Magnetic Stimulation On The Growth Of The Microalga Nannochloropsis Oculata, Manuella Oliveira Jun 2017

Magnetic Stimulation On The Growth Of The Microalga Nannochloropsis Oculata, Manuella Oliveira

Electronic Thesis and Dissertation Repository

Fossil fuels, our principal sources of energy supply, are non-renewable and research is needed on alternatives that are renewable and potentially more environmentally friendly. Microalgae have been investigated as a future feedstock alternative to petroleum but the technology is still expensive and improvements are needed. Reduction in costs might be achieved by increasing algal biomass and lipid productivity. The lipids can be used to produce biofuels such as biodiesel and biojet fuel. The marine microalga Nannochloropsis oculata grows well and can accumulate high lipid content. In this study, the effects of static magnetic field stimulation (SMF) of 0 (control), 5, …


Marine Biomass Analyzer, Kai Jay Staal, Brian Paris, Tyler Cottle Jun 2017

Marine Biomass Analyzer, Kai Jay Staal, Brian Paris, Tyler Cottle

Mechanical Engineering

This report documents the design, fabrication, and testing for a marine biomass analyzer. The goal of the project and constructed system was to determine the validity and efficacy of a process that could flatten benthic macrofauna to a consistent thickness such that a biomass for the collected sample could be accurately determined. The system that was built and tested consists of a drive train that turns a mill subassembly where the organisms are flattened, supply and collection spools that hold the white fabric and clear film used to capture the organisms, a collection zone where the sample is injected, and …


An Analytical Model To Predict The Length Of Oxygen-Assisted, Swirled, Coal And Biomass Flames, David Arthur Ashworth Mar 2017

An Analytical Model To Predict The Length Of Oxygen-Assisted, Swirled, Coal And Biomass Flames, David Arthur Ashworth

Theses and Dissertations

Government regulations to reduce pollutants and increasing environmental awareness in the power generation industry have encouraged coal power plants to begin firing biomass in their boilers. Biomass generally consists of larger particles which produce longer flames than coal for a given burner. The length of the flame is important in fixed-volume boilers because of its influence on heat transfer, corrosion, deposition, and pollutant formation. Many pulverized fuel burners employ a series of co-annular tubes with various flows of fuel and air to produce a stabilized flame. A variable swirl burner with three co-annular tubes, each of variable diameter, has been …


Heat Transfer Analysis In A Paddle Reactor For Biomass Fast Pyrolyis, Ankith Ullal Jan 2017

Heat Transfer Analysis In A Paddle Reactor For Biomass Fast Pyrolyis, Ankith Ullal

Dissertations, Master's Theses and Master's Reports

Heat transfer analysis was performed on a novel auger reactor for biomass fast pyrolysis. As part of this analysis, correlations for specific heat capacity and heat transfer coefficients for biomass (sawdust) and sand (used as heat transfer medium) were developed. For sand, the heat transfer coefficient followed a power law distribution with reactor fill level and temperature. For raw biomass, the heat transfer coefficient also showed similar dependence on fill level, but was independent of temperature up to 300°C. These correlations were used in a one dimensional heat transfer model developed to calculate the heating time and heating rate of …


Designing And Development Of A Photobioreactor For Optimizing The Growth Of Micro Algae And Studying Its Growth Parameters, Sarmila Katuwal Jan 2017

Designing And Development Of A Photobioreactor For Optimizing The Growth Of Micro Algae And Studying Its Growth Parameters, Sarmila Katuwal

Electronic Theses and Dissertations

This thesis presents the estimated value of materials required to grow 1g of biomass and the analysis of the light intensity with respect to flow path and flow rate. This thesis aims to design the sparger for a flat plate Photobioreactor, study the flow patterns at different flow rate of air flow and check the performance of flat plate PBR by growing the cyanobacteria. The estimated value to produce 1g of biomass (C44.6H7O25N7.68P0.9S0.3) was 0.099g of N, 0.493g of C, 0.160 g of Na, 0.026 g of P, …


Understanding Glycoside Hydrolase Processivity For Improved Biomass Conversion, Suvamay Jana Jan 2017

Understanding Glycoside Hydrolase Processivity For Improved Biomass Conversion, Suvamay Jana

Theses and Dissertations--Chemical and Materials Engineering

In nature, organisms secrete synergistic enzyme cocktails to deconstruct crystalline polysaccharides, such as cellulose and chitin, to soluble sugars. The cocktails consist of multiple classes of processive and non-processive glycoside hydrolases (GH) that aid in substrate accessibility and reduce product inhibition. Processive GHs attach to chain ends and hydrolyze many glycosidic linkages in sequence to produce disaccharide units before dissociation, and as such, are responsible for the majority of hydrolytic bond cleavages. Accordingly, processive GHs are targets for activity improvements towards efficient and economical biomass conversion. However, the mechanism and factors responsible for processivity are still not understood completely at …


Development Of Heterogeneous Catalysts For Upgrading Biomass Pyrolysis Bio-Oils Into Advanced Biofuels, Shouyun Cheng Jan 2017

Development Of Heterogeneous Catalysts For Upgrading Biomass Pyrolysis Bio-Oils Into Advanced Biofuels, Shouyun Cheng

Electronic Theses and Dissertations

The massive consumption of fossil fuels and associated environmental issues result in an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO) are two most promising bio-oil upgrading techniques for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although some progresses have been made, the cost and effectiveness of catalysts still remain challenges. The main objective of this study was to develop efficient heterogeneous catalysts for upgrading bio-oils into advanced hydrocarbon biofuel with low costs. In catalytic cracking, …


Impact Of Pretreatment Methods On Fast Pyrolysis Of Biomass, Yash Donepudi Jan 2017

Impact Of Pretreatment Methods On Fast Pyrolysis Of Biomass, Yash Donepudi

Dissertations, Master's Theses and Master's Reports

Biomass is considered a renewable source of energy with minimum carbon foot print if managed sustainably. The majority of the worlds energy is spend on transportation, and fast pyrolysis of biomass could be a potential route for production of a sustainable liquid transportation fuel. However, there are several hurdles in the conversion process. This work addresses these hurdles by investigating the impact of several pretreatment methods on fast pyrolysis including thermal pretreatment (torrefaction), comminution/grinding, mineral reduction. The impact of important parameters like heat transfer medium, conversion temperature and particle size were also investigated.

A mild thermal pretreatment of biomass (~10-15% …


Co-Gasification Of Coal And Biomass Wastes In An Entrained Flow Gasifier: Modelling, Simulation And Integration Opportunities, Dalia A. Ali Eng, Mamdouh A. Gadalla Prof., Omar Y. Abdelaziz, Christian P. Hulteberg, Fatma H. Ashour Prof. Jan 2017

Co-Gasification Of Coal And Biomass Wastes In An Entrained Flow Gasifier: Modelling, Simulation And Integration Opportunities, Dalia A. Ali Eng, Mamdouh A. Gadalla Prof., Omar Y. Abdelaziz, Christian P. Hulteberg, Fatma H. Ashour Prof.

Chemical Engineering

Gasification processes convert carbon-containing material into syngas through chemical reactions in the presence of gasifying agents such as air, oxygen, and steam. Syngas mixtures produced from such processes consist mainly of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), and methane (CH4); this gas can be directly utilised as a fuel to produce electricity or steam. Besides, it is regarded as a basic feedstock within the petrochemical and conventional refining industries, producing various useful products like methanol, hydrogen, ammonia, and acetic acid. In this work, a rigorous process model is developed to simulate the co-gasification of coal-biomass blends through an …


Impact Of Trucking Network Flow On Preferred Biorefinery Locations In The Southern United States, Timothy M. Young, Lee D. Han, James H. Perdue, Stephanie R. Hargrove, Frank M. Guess, Xia Huang, Chung-Hao Chen Jan 2017

Impact Of Trucking Network Flow On Preferred Biorefinery Locations In The Southern United States, Timothy M. Young, Lee D. Han, James H. Perdue, Stephanie R. Hargrove, Frank M. Guess, Xia Huang, Chung-Hao Chen

Electrical & Computer Engineering Faculty Publications

The impact of the trucking transportation network flow was modeled for the southern United States. The study addresses a gap in existing research by applying a Bayesian logistic regression and Geographic Information System (GIS) geospatial analysis to predict biorefinery site locations. A one-way trucking cost assuming a 128.8 km (80-mile) haul distance was estimated by the Biomass Site Assessment model. The "median family income," "timberland annual growth-to-removal ratio," and "transportation delays" were significant in determining mill location. Transportation delays that directly impacted the costs of trucking are presented. A logistic model with Bayesian inference was used to identify preferred site …


An Economic Evaluation Of A Biofuel Supply Chain Utilizing Multiple Feedstocks, Huaqi Zhang Dec 2016

An Economic Evaluation Of A Biofuel Supply Chain Utilizing Multiple Feedstocks, Huaqi Zhang

Masters Theses

Biomass is considered as one potential feedstock for biofuel production. However, the high cost of biomass-to-biofuel supply chain, attributed to biomass’s low bulk density and resulting harvest, storage, and transportation challenges, has been a major hindrance to the success of biomass-based biofuel industry. In addition, the issue of dry matter losses during storage for a feedstock has affected biomass quantity and quality if the feedstock is stored for several months after a single harvest in a year. One potential way to improve the economics of biomass supply chain is to reduce storage need and enhance the utilization of harvest equipment …


Hydrodeoxygenation Of Pinyon Juniper Catalytic Pyrolysis Oil To Hydrocarbon Fuels, Hossein Jahromi, Foster Agblevor Nov 2016

Hydrodeoxygenation Of Pinyon Juniper Catalytic Pyrolysis Oil To Hydrocarbon Fuels, Hossein Jahromi, Foster Agblevor

Biological Engineering Faculty Publications

As a renewable source, biomass is an essential option for diminishing dependence on conventional fossil fuel energy sources. Pyrolysis is a promising technology for the conversion of biomass into liquid fuels. However, several challenges associated with using pyrolysis oils such as their high acidity and low energy content inhibit their direct use as transportation fuels. We conducted a batch hydrodeoxygenation of pinyon juniper catalytic pyrolysis oil using Ni/SiO2-Al2O3 catalyst to improve the following properties of the oil: heating value, acidity, oxygen content, water content, and viscosity. During the hydrogenation process, the influence of four experimental factors; temperature, catalyst loading, residence …


Use Of Green Mussel Shell As A Desulfurizer In The Blending Of Low Rank Coal-Biomass Briquette Combustion, Mahidin Mahidin, Asri Gani, M. Reza Hani, Muhammad Syukur, Hamdani Hamdani, Khairil Khairil, Samsul Rizal, Abdul Hadi, T.M.I. Mahlia Aug 2016

Use Of Green Mussel Shell As A Desulfurizer In The Blending Of Low Rank Coal-Biomass Briquette Combustion, Mahidin Mahidin, Asri Gani, M. Reza Hani, Muhammad Syukur, Hamdani Hamdani, Khairil Khairil, Samsul Rizal, Abdul Hadi, T.M.I. Mahlia

Makara Journal of Technology

Calcium oxide-based material is available abundantly and naturally. A potential resource of that material comes from marine mollusk shell such as clams, scallops, mussels, oysters, winkles and nerites. The CaO-based material has exhibited a good performance as the desulfurizer or adsorbent in coal combustion in order to reduce SO2 emission. In this study, pulverized green mussel shell, without calcination, was utilized as the desulfurizer in the briquette produced from a mixture of low rank coal and palm kernel shell (PKS), also known as bio-briquette. The ratio of coal to PKS in the briquette was 90:10 (wt/wt). The influence of green …


Enzymatic Liquefaction Of Untreated Corn Stover, Neal N. Hengge Aug 2016

Enzymatic Liquefaction Of Untreated Corn Stover, Neal N. Hengge

Open Access Theses

There is an ever increasing need for renewable alternatives to fossil fuels derived from petroleum. This makes feedstocks in the form of lignocellulosic biomass attractive substrates for the production of ethanol and value added chemicals. However, the economics of converting lignocellulosic materials involve high processing costs attributed with pretreatment of the biomass and the use of enzymes for saccharification. Corn stover was obtained for the examination of an upstream processing step to transform the material into a pumpable slurry for subsequent pretreatment and saccharification. Biomass liquefaction was carried out using the enzyme Depol 692L (Biocatalysts, Wales, UK) at 50°C with …


Assimilation Of Sar And Optical Data Into An Agro-Meteorological Model For Monitoring Yield Of Corn, Maël Ameline, Rémy Fieuzal, Julie Betbeber, Jean-Franҫois Berthoumieu, Frédéric Baup Jul 2016

Assimilation Of Sar And Optical Data Into An Agro-Meteorological Model For Monitoring Yield Of Corn, Maël Ameline, Rémy Fieuzal, Julie Betbeber, Jean-Franҫois Berthoumieu, Frédéric Baup

International Congress on Environmental Modelling and Software

This study aims to assess the contribution of SAR and optical satellite images to estimate corn biophysical parameters and crop yield at field scale. Satellite data are assimilated into a simple agro-meteorological model named SAFY-WB (Simple Algorithm For Yield estimates combined with a Water Balance model), in order to simulate leaf area index, dry mass and yield. The method has been assessed thanks to data collected over two study areas (both located in the South-West of France), during two experimental campaigns: MCM’10 and MCM’15 (Multispectral Crop Monitoring), respectively performed in 2010 and 2015. SAR backscattering coefficients were acquired in the …


Modeling Flow, Heat And Mass Transfer In A Porous Biomass Plug - When Used In An Electrically Heated Tobacco System, Markus Nordlund, Arkadiusz K. Kuczaj Jul 2016

Modeling Flow, Heat And Mass Transfer In A Porous Biomass Plug - When Used In An Electrically Heated Tobacco System, Markus Nordlund, Arkadiusz K. Kuczaj

Sixth International Conference on Porous Media and Its Applications in Science, Engineering and Industry

Heating porous biomass samples is utilized in many industries for drying or extracting Volatile Organic Compounds (VOC) from the biomass. The heating may trigger physical and chemical processes within the material, such as release of VOC, thermal degradation and evaporation. Most of the processes triggered by the increased temperature are occurring simultaneously and are strongly interdependent. For most practical applications, it is important to have control of the complex processes occurring during heating to generate stable and controllable release of VOC. This is the case for products delivering the released VOC to consumers by inhalation, as is the case of …


On-Farm Integrated High-Solids Processing System For Biomass, Sue E. Nokes, Bert C. Lynn, Stephen E. Rankin, Barbara L. Knutson, Michael D. Montross, Michael D. Flythe Jun 2016

On-Farm Integrated High-Solids Processing System For Biomass, Sue E. Nokes, Bert C. Lynn, Stephen E. Rankin, Barbara L. Knutson, Michael D. Montross, Michael D. Flythe

Biosystems and Agricultural Engineering Faculty Patents

A method for on-farm processing a biomass feedstock into a useful industrial chemicals includes the steps of (a) delignifying the biomass feedstock to produce a delignified biomass, (b) subjecting the deliguified biomass to cellulase production, (c) subjecting the deliguified biomass with attached cellulase to simultaneous cellulolytic and solventogenic reactions to produce useful industrial chemicals (d) collecting and separating the useful industrial chemical from the fermentation broth and (e) collecting the fermentation residues.


Integrating Batch Pyrolysis And Fractional Condensation (2d Mfr) To Get High-Value Products From Biomass, Mohammad Hossain, Chiara Barbiero, Ian Scott, Franco Berruti, Cedric Briens Jun 2016

Integrating Batch Pyrolysis And Fractional Condensation (2d Mfr) To Get High-Value Products From Biomass, Mohammad Hossain, Chiara Barbiero, Ian Scott, Franco Berruti, Cedric Briens

5th International Congress on Green Process Engineering (GPE 2016)

Agricultural crop residues are a source of inexpensive biomass to convert into bioproducts. The recovery of valuable chemicals from plant waste would partly solve the disposal issue and offer a more environmentally friendly alternative to synthetic chemical production. One approach to separate and concentrate valuable chemicals from biomass is pyrolysis using a batch reactor process. A mechanically fluidized reactor (MFR) was developed to pyrolyze biomass from ambient to temperatures near 600 °C, forming gases that are then condensed in an ice-chilled condenser to form a bio-oil. The bio-oil produced by the MFR can be separated within temperature ranges, termed one-dimensional …


Development Of A Mobile 100 Kg/H Plant For Pyrolysis Using A Mechanically Fluidized Reactor, Dhiraj Kankariya, Stefano Tacchino, Dominic Pjontek, Franco Berruti, Cedric Briens Jun 2016

Development Of A Mobile 100 Kg/H Plant For Pyrolysis Using A Mechanically Fluidized Reactor, Dhiraj Kankariya, Stefano Tacchino, Dominic Pjontek, Franco Berruti, Cedric Briens

5th International Congress on Green Process Engineering (GPE 2016)

Current pyrolysis processes perform the thermal decomposition of biomass into a liquid bio-oil, bio-char and non-condensable gases, at around 500 °C, without the addition of oxygen gas. The bio-oil is a complex mixture of many components that is used either as a substitute for fuel oil or for applications such as liquid smoke and bio-phenol resins that do not require pure chemicals.

The large-scale mechanical fluidized reactor (MFR) is a new technology for the pyrolysis of biomass developed by ICFAR, which does not require a sand bed and, thus, provides an undiluted solid char residue, which is essential to realize …


Catalytic Property Of Olivine For Bio-Oil Gasification, Mohammad Latifi, Franco Berruti, Cedric Briens Jun 2016

Catalytic Property Of Olivine For Bio-Oil Gasification, Mohammad Latifi, Franco Berruti, Cedric Briens

5th International Congress on Green Process Engineering (GPE 2016)

Introduction

Biomass is an attractive renewable source of fuel and energy. Thermochemical processes can convert biomass to a liquid bio-oil or to a syngas. The advantage of using bio-oil as an intermediate is that, in contrast with both raw biomass and gas, it can easily be produced in small distributed units, stored and transported. Not only can platform chemicals and clean fuels be produced from syngas, but hydrogen is itself an alternative fuel. A high hydrogen production is usually desired: for example, methanol production requires a syngas with a molar H2/CO ratio of 2. Therefore, maximum hydrogen production …


Using The Jiggled Bed Reactor To Develop Activated Carbons From Biomass Residues, Anastasia Colomba, Franco Berruti, Cedric Briens Jun 2016

Using The Jiggled Bed Reactor To Develop Activated Carbons From Biomass Residues, Anastasia Colomba, Franco Berruti, Cedric Briens

5th International Congress on Green Process Engineering (GPE 2016)

Activated carbons are the most used adsorbent material. Their applications range from wastewater treatment, air purification, removal of contaminants and many others. According to “Global Activated Carbon Market Forecast & Opportunities 2017”, the demand for activated carbon is expected to increase more than 10% per year for the next 5 years to make it a $3 billion market by 2017. Current processes for the production of activated carbons from renewable resources do not provide valuable co-products. This presentation focuses on the conversion to activated carbon of the bio-char co-product of the pyrolysis process. Pyrolysis also provides valuable bio-oil, which is …


Adhesives From Biomass Pyrolysis, Dongbing Li, Franco Berruti, Cedric Briens Jun 2016

Adhesives From Biomass Pyrolysis, Dongbing Li, Franco Berruti, Cedric Briens

5th International Congress on Green Process Engineering (GPE 2016)

Fast pyrolysis of waste biomass with high lignin content, such as birch wood, birch bark, hydrolysis lignin, kraft lignin or low-cost digestate from biogas production, provides oils that can be substituted for phenol in phenol-formaldehyde resins. Biomass fast pyrolysis was performed in a dedicated fluidized bed pyrolyzer that incorporated two crucial innovations: a fractional condensation train provided dry bio-oils with ~1% of moisture and much reduced acidity; autothermal pyrolysis with partial oxidation reduces operating and capital costs, as well as increasing the quality of the dry bio-oil. Dry bio-oil obtained from autothermal fast pyrolysis of kraft lignin can be used …


Fundamental Study And Applications To Biomass Pyrolysis Of The Mechanically Fluidized Reactor, Valentina Lago, Franco Berruti, Cedric Briens Jun 2016

Fundamental Study And Applications To Biomass Pyrolysis Of The Mechanically Fluidized Reactor, Valentina Lago, Franco Berruti, Cedric Briens

5th International Congress on Green Process Engineering (GPE 2016)

Lignin has great potential for the production of aromatics currently derived from petroleum, since it is the most abundant source of aromatics in nature. At present, Kraft lignin is used as fuel within the pulping process but, alternatively, it could be converted to high-value chemicals using thermochemical processes such as pyrolysis. Kraft lignin, however, is a very cohesive and thermally sensitive powder with foaming and agglomerating tendency under reaction conditions. Consequently, a novel reactor design, designated as Mechanically Fluidized Reactor (MFR) has been developed to successfully process Kraft lignin.

Please click Additional Files below to see the full abstract.


Hydrodynamic Study Of A Circulating Fluidized Bed Used For Biomass Gasification Between 20 °C And 900 °C, Sébastien Pecate, Mehrdji Hemati, Mathieu Morin, Yilmaz Kara, Sylvie Valin May 2016

Hydrodynamic Study Of A Circulating Fluidized Bed Used For Biomass Gasification Between 20 °C And 900 °C, Sébastien Pecate, Mehrdji Hemati, Mathieu Morin, Yilmaz Kara, Sylvie Valin

Fluidization XV

This work, carried out in the GAYA project frame and subsidized by ADEME, concerns the hydrodynamic study of a 60 kWth circulating fluidized bed pilot plant constructed at the Laboratoire de Génie Chimique in Toulouse for biomass gasification. In that process, biomass gasification and heating of fluidisation material (sand, olivine, catalyst…) which also acts as heat transfer medium, are performed in two separate reactors: a dense fluidized bed and a transported bed. Thermal energy, required in order to heat the fluidisation material, is supplied by the partial combustion of the char produced in the gasification reactor. The hydrodynamic study carried …


Bed Agglomeration Behavior In A Bubbling Fluidized-Bed Combustor, Ehsan Ghiasi May 2016

Bed Agglomeration Behavior In A Bubbling Fluidized-Bed Combustor, Ehsan Ghiasi

Electronic Thesis and Dissertation Repository

Agglomeration is a major operational problem during the combustion of biomass containing a high amount of alkali compounds. The agglomerate formation is mainly due to the presence of alkali elements in biomass ashes that form low-melting compounds in the combustion.

In the first part of this project, the critical amount of liquid that would lead to a severe agglomeration/de-fluidization was studied and determined in a lab scale bubbling fluidized bed (BFB) heated at elevated temperatures. To simulate the biomass ashes, various percentages of KCl and KCl-K2SO4 compounds at eutectic composition were mixed with silica sand as the …


Assessing The Limitations And Capabilities Of Lidar And Landsat 8 To Estimate The Aboveground Vegetation Biomass And Cover In A Rangeland Ecosystem Using A Machine Learning Algorithm, Shital Dhakal May 2016

Assessing The Limitations And Capabilities Of Lidar And Landsat 8 To Estimate The Aboveground Vegetation Biomass And Cover In A Rangeland Ecosystem Using A Machine Learning Algorithm, Shital Dhakal

Boise State University Theses and Dissertations

Remote sensing based quantification of semiarid rangeland vegetation provides the large scale observations required for monitoring native plant distribution, estimating fuel loads, modeling climate and hydrological dynamics, and measuring carbon storage. Fine scale 3-dimensional vertical structural information from airborne lidar and improved signal to noise ratio and radiometric resolution of recent satellite imagery provide opportunities for refined measurements of vegetation structure.

In this study, we leverage a large number of time series Landsat 8 vegetation indices and lidar point cloud - based vegetation metrics with ground validation for scaling aboveground shrub and herb biomass and cover from small scale plot …


Minimizing Ethanol Concentration In Organosolv Pretreatment For The Saccharification Of Loblolly Pine, Nelson B. Heringer May 2016

Minimizing Ethanol Concentration In Organosolv Pretreatment For The Saccharification Of Loblolly Pine, Nelson B. Heringer

Biological and Agricultural Engineering Undergraduate Honors Theses

Organic solvent pretreatment, commonly known as organosolv, is a method used to prepare biomass for enzymatic hydrolysis for the production of biofuels. This method common uses ethanol as the organic solvent. However, this creates an economic issue with the product stream, as ethanol becomes a product and input. This project sought to explore how decreasing the use of ethanol in organosolv pretreatment affected the recoverability of sugars after enzymatic hydrolysis. Loblolly pine (Pinus taeda L.) was pretreated at 170 °C for 60 minutes in 1% dilute sulfuric acid and an ethanol concentration varying from 65% to 35%. Compositional …


Bioenergy From Wastewater-Based Biomass, Ronald C. Sims, Sean K. Bedingfield, Reese Thompson, Judith L. Sims Jan 2016

Bioenergy From Wastewater-Based Biomass, Ronald C. Sims, Sean K. Bedingfield, Reese Thompson, Judith L. Sims

Biological Engineering Faculty Publications

The U.S. Department of Energy (DOE) has stated that biomass is the only renewable resource that can supplant petroleum-based liquid transportation fuels in the near term. Wastewater is beginning to be viewed as a potential resource that can be exploited for biomass production and conversion to bioenergy. We suggest that using wastewater from municipalities and industries as a resource for cultivating biomass and combining wastewater treatment with the production of biomass for bioenergy would provide benefits to both industries. Two waste-based biomass production systems that currently have large nationwide infrastructures include: (1) wastewater treatment systems that can be used to …


Experimental Investigation Of Fast Pyrolysis Of Arundo Donax In A Novel Paddle Reactor, Chintan Desai Jan 2016

Experimental Investigation Of Fast Pyrolysis Of Arundo Donax In A Novel Paddle Reactor, Chintan Desai

Dissertations, Master's Theses and Master's Reports

The main objective of this research was to show the effectiveness of a novel paddle reactor for fast pyrolysis and study the effect of biomass particle size and reaction temperature of Arundo Donax a type of energy crop on the bio-oil yields. The novel paddle reactor showed effective mixing and heat transfer which were proved with the help of studying the residence time and the heating characteristics of the system respectively. The effect of different biomass particle sizes on the bio-oil yield was not significant, the bio-oil yield was approximately 50% for all the sizes. For Arundo Donax particle sizes …


Biomass Catalytic Upconversion With A Metallic Catalyst Bed Under Radio Frequency Induction Heating, Mohammad Abu-Laban Jan 2016

Biomass Catalytic Upconversion With A Metallic Catalyst Bed Under Radio Frequency Induction Heating, Mohammad Abu-Laban

LSU Master's Theses

This study investigated the thermal performances of platinum particles when coupled on a steel support, under the application of a radio frequency (RF) field. Platinum nanoparticles were reduced on the surfaces of type-316 stainless steel balls, based on published methods of Pt reduction from chloroplatinic acid. Alternatively, 1wt. % Pt/Al2O3 commercial catalyst pellets were mixed with stainless steel balls and investigated for hydro-deoxygenation of pyrolysis oil from pine sawdust biomass. The catalysts were placed inside an electric insulator tube suspended within a looping copper coil connected to the induction heater, and heated at different power levels. An infrared camera was …