Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Mechanisms Of Calcium Phosphate Mineralization On Biological Interfaces And Their Engineering Applications, Doyoon Kim Dec 2018

Mechanisms Of Calcium Phosphate Mineralization On Biological Interfaces And Their Engineering Applications, Doyoon Kim

McKelvey School of Engineering Theses & Dissertations

All living organisms utilize phosphorus (P) as an essential component of their cell membranes, DNA and RNA, and adenosine triphosphate. Bones, in addition to bearing loads, play an important role in balancing P levels in our bodies. In bones, a network of collagen templates and calcium phosphate (CaP) nanocrystals builds hierarchical levels, from nano- to macroscale. Within this architecture, the thermodynamic properties of CaP minerals are influential. Despite the importance of nucleation, growth, and crystallization in collagen structures for tissue development, little kinetic study of these processes has been conducted due to the limited in situ techniques for monitoring these …


Radiation Effects In Apatite And High Entropy Alloy Under Energetic Ions And Electrons, Jianren Zhou Jun 2018

Radiation Effects In Apatite And High Entropy Alloy Under Energetic Ions And Electrons, Jianren Zhou

LSU Doctoral Dissertations

Radiation effects in apatite and high entropy alloy under energetic ions and electrons are studied in this doctoral dissertation to develop advanced crystalline ceramic waste forms and nuclear structural materials. Apatite is proposed as a ceramic waste form for the immobilization of radionuclides, but its performance is strongly affected by the irradiation of the incorporated radionuclides. It is thus important to understand the radiation effects in apatite structure and the underlying physics. Effects of chemical composition, grain size, interfacial structure, as well as radiation conditions on the microstructural evolution, phase transformation and damage mechanisms of apatite under alpha-decay and beta-decay …


Mine Arnaud Project: Flotation Circuit Adjustment And Collector Reduction, Christine Croteau, Patrick Laflamme, Michel Lafontaine May 2018

Mine Arnaud Project: Flotation Circuit Adjustment And Collector Reduction, Christine Croteau, Patrick Laflamme, Michel Lafontaine

Beneficiation of Phosphates VIII

The Mine Arnaud open deposit is located in Sept-Iles in the province of Quebec, Canada. The project, which is currently under development, consists of igneous apatite ore grading around 5% P2O5.The target metallurgical performances are set to a concentrate of P2O5 grade of at least 39% with an overall P2O5 recovery above 90%.The beneficiation of the ore is achieved by grinding to the liberation size, magnetic separation to remove the titaniferous magnetite and phosphate flotation. Most of Mine Arnaud’s apatite beneficiation flowsheet development testwork was realized by COREM. The most …


Surface Chemistry And Flotation Behavior Of Monazite, Apatite, Ilmenite, Quartz, Rutile, And Zircon With Octanohydroxamic Acid, Corby Anderson, Josue Mushidi Apr 2018

Surface Chemistry And Flotation Behavior Of Monazite, Apatite, Ilmenite, Quartz, Rutile, And Zircon With Octanohydroxamic Acid, Corby Anderson, Josue Mushidi

Beneficiation of Phosphates VIII

Global increase in rare earth demand and consumption has led to a further understanding of their beneficiation and recovery. Monazite is the second most important rare earth mineral that can be further exploited. In this study, the surface chemistry of monazite in terms of zeta potential, adsorption density, and flotation response by microflotation using octanohydroxamic acid is determined. Apatite, ilmenite, quartz, rutile, and zircon are minerals that frequently occur with monazite among other minerals, hence were chosen as gangue minerals in this study. The Iso Electric Point (IEP) of monazite, apatite, ilmenite, quartz, rutile, and zircon are 5.3, 8.7, 3.8, …


An Economic Analysis Of The Extraction Of Rare Earth Elements From Clay Waste Stream, Mary Mcbride, Marti Bell, Melanie Lindsey May 2017

An Economic Analysis Of The Extraction Of Rare Earth Elements From Clay Waste Stream, Mary Mcbride, Marti Bell, Melanie Lindsey

Chancellor’s Honors Program Projects

No abstract provided.


When 1 + 1 > 2: Nanostructured Composites For Hard Tissue Engineering Applications, Vuk Uskoković Dec 2015

When 1 + 1 > 2: Nanostructured Composites For Hard Tissue Engineering Applications, Vuk Uskoković

Pharmacy Faculty Articles and Research

Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. …


Effect Of Ion Concentration On Mechanosynthesis Of Carbonated Chlorapatite Nanopowders May 2015

Effect Of Ion Concentration On Mechanosynthesis Of Carbonated Chlorapatite Nanopowders

Faculty of Engineering University of Malaya

Carbonated chlorapatite nanopowders (n-CCAp) with different degrees of substitution were successfully synthesized by the one-step mechanochemical process. Results demonstrated that the formation of n-CCAp was influenced strongly by the carbonate content (x). From X-ray analysis, crystallite size, crystallinity degree, and unit cell volume of n-CCAp decreased significantly as carbonate content (x) increased from 0 to 2. Conversely, the lattice strain and the volume fraction of grain boundaries grew considerably. Microscopic analysis showed the average particle size of the synthesized powders was 15 +/- 10 nm. The influence of carbonate concentration on mechanosynthesis of pure n-CCAp utilizing a facile solid-state process …


Effect Of High-Energy Ball Milling On The Formation And Micro Structural Features Of Carbonated Chlorapatite Nanopowders Apr 2015

Effect Of High-Energy Ball Milling On The Formation And Micro Structural Features Of Carbonated Chlorapatite Nanopowders

Faculty of Engineering University of Malaya

Carbonated chlorapatite nanopowders (n-CCAp) were synthesized by mechanochemical process from calcite (CaCO3), phosphorus pentoxide (P2O5), and calcium chloride (CaCl2) as raw materials. Results demonstrated that the formation of n-CCAp was influenced strongly by the milling time. At the beginning of milling (up to 15 min), CaCO3 and CaCl2 were the dominant phases, while P2O5 disappeared entirely due to its very high deliquescent nature. With increasing the milling time to 600 min, the progressive mechanochemical reaction was completed which resulted in the formation of nanostructured carbonated chlorapatite. According to the X-ray diffraction data, crystallite size of the product decreased from 24 …


Position Preference And Diffusion Path Of An Oxygen Ion In Apatite-Type Lanthanum Silicate La9.33si6o26: A Density Functional Study, Ting Liao, Taizo Sasaki, Shigeru Suehara, Ziqi Sun Jan 2011

Position Preference And Diffusion Path Of An Oxygen Ion In Apatite-Type Lanthanum Silicate La9.33si6o26: A Density Functional Study, Ting Liao, Taizo Sasaki, Shigeru Suehara, Ziqi Sun

Australian Institute for Innovative Materials - Papers

Using density functional theory, we investigated the position preference and diffusion mechanisms of interstitial oxygen ions in lanthanum silicate La9.33Si6O26, which is an apatite-structured oxide and a promising candidate electrolyte material for solid oxide fuel cells. The reported lanthanum vacancies were explicitly taken into account by theoretically determining their arrangement with a supercell model. The most stable structures and the formation energies of oxygen interstitials were determined for each charged state. It was found that the double-negatively charged state is stable over a wide range of the Fermi level, and that the excess oxygen …


Measurement Of Metal Migration In Sediment Caps With X-Ray Fluorescene, Ming Yin Jan 2007

Measurement Of Metal Migration In Sediment Caps With X-Ray Fluorescene, Ming Yin

LSU Doctoral Dissertations

ABSTRACT Sand is often used as a passive barrier to slow release of metals from the sediment and to separate benthic organisms from the sediment. Materials that effectively adsorb metals have the potential to provide significantly greater effectiveness by further retarding metal release. In this thesis, the effectiveness of apatite and Phosphil®, which contain phosphate in a form that can absorb many metals, is evaluated with a series of sorption and migration column experiments using Cr, Cu, Zn and Pb. Langmuir shape isotherms were observed suggesting that the effectiveness of these materials decreases at high concentration. The sorption isotherm experiments …


Microstructure Of Mica Glass-Ceramics And Interface Reactions Between Mica Glass-Ceramics And Bone, W. Holand, W. Gotz, G. Carl, W. Vogel Jan 1992

Microstructure Of Mica Glass-Ceramics And Interface Reactions Between Mica Glass-Ceramics And Bone, W. Holand, W. Gotz, G. Carl, W. Vogel

Cells and Materials

This review paper characterizes glass-ceramics containing mica as main crystal phase. The phase formation reactions in dependence of the chemical composition and the microstructure are shown. Microstructure of mica glass-ceramics has been studied by electron replica and scanning electron microscopic (SEM) techniques.

Mica glass-ceramics have previously been developed in Si02-B20rA120rMgO-F--base glasses. The material is machinable because of the precipitation of micas of fluorophlogopite-type. Also, a machinable glass-ceramic for dental applications was developed based on KMg2_5(Si40 10)F2-micas. We developed mica glass-ceramics in the Si02-Al20rMgO-NaiO-K20-F glass system. Phase formation within these glasses was observed by SEM. A double controlled nucleation and crystallization …


Apatite - Cholesterol Agglomerates In Human Atherosclerotic Lesions, Sara Sarig, Danielle Hirsch, Reuven Azoury, Teddy A. Weiss, Iony Katz, Howard S. Kruth Jan 1992

Apatite - Cholesterol Agglomerates In Human Atherosclerotic Lesions, Sara Sarig, Danielle Hirsch, Reuven Azoury, Teddy A. Weiss, Iony Katz, Howard S. Kruth

Cells and Materials

The purpose of this study was to examine the ultrastructural relationships of cholesterol crystals and apatite deposits in human atherosclerotic lesions. Segments of human aortic atherosclerotic lesions were obtained at autopsy , fixed in glutaraldehyde and dehydrated without using any organic solvents. The aortic segments were coated with carbon and subjected to various scanning electron microscope analyses. These included secondary electron imaging, back scattering of primary electrons, energy dispersive X-ray analysis of selected spots followed by area mapping of calcium and phosphorus , and cathodoluminescence.

The information gathered from scanning of selected areas in the lesions by all the techniques …