Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Anode

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 118

Full-Text Articles in Engineering

Modeling And Performance Analysis Of Solid Oxide Fuel Cell, Mariya Pecherskaya, Khakimjan Butanov, Suhrob A. Ibodullaev, Olim Ruzimuradov, Shavkat Mamatkulov Apr 2024

Modeling And Performance Analysis Of Solid Oxide Fuel Cell, Mariya Pecherskaya, Khakimjan Butanov, Suhrob A. Ibodullaev, Olim Ruzimuradov, Shavkat Mamatkulov

CHEMISTRY AND CHEMICAL ENGINEERING

A three-dimensional numerical model of the system configurations of various types of solid oxide fuel cells (SOFCs) is used and the effect of parameters on SOFC performance is numerically investigated using COMSOL Multiphysics. The effect of parameters such as support layer thickness, operating temperature, and electrode porosity are shown in the polarization and power curves for each model. The results of the study showed the advantages of the anode-supported SOFC compared to cathode- and electrolyte-supported SOFC.

Theoretical calculations demonstrate the highest output power density in the anode-supported SOFC at 900 ℃, and reach a value of 0.585 W cm-2 …


Characteristics Of Sodium Lithium Titanate Synthesized At Different Solid-State Reaction Temperature For Lithium-Ion Battery Anode, Ilham Nur Dimas Yahya, Nofrijon Sofyan, Deni Shidqi Khaerudini, Gerald Ensang Timuda, Slamet Priyono Dec 2023

Characteristics Of Sodium Lithium Titanate Synthesized At Different Solid-State Reaction Temperature For Lithium-Ion Battery Anode, Ilham Nur Dimas Yahya, Nofrijon Sofyan, Deni Shidqi Khaerudini, Gerald Ensang Timuda, Slamet Priyono

Journal of Materials Exploration and Findings

The effect of sintering temperature on the characteristics of sodium lithium titanate (NaLiTi3O7/NaLTO) synthesized at different solid-state reaction temperature and its performance as lithium-ion battery anode has been investigated. The precursors for the synthesis consisted of LiOH.H2O, TiO2, and NaHCO3. The synthesis was performed via solid-state reaction method. The precursors were mixed and sintered at variation temperatures of 900oC, 1000oC, and 1100oC for 2 hours under atmosphere condition. The final product was characterized using X-ray diffraction (XRD) and particle size analyzer (PSA). The XRD …


Development Of Battery-Grade Silicon Through Magnesiothermic Reduction Of Halloysite-Derived Silica, Nathan Clarke Dec 2023

Development Of Battery-Grade Silicon Through Magnesiothermic Reduction Of Halloysite-Derived Silica, Nathan Clarke

Theses and Dissertations

The production of halloysite-derived silicon (HDS) is investigated as a potential anode material in lithium-ion batteries (LIBs). Other researchers have found HDS to be electrochemically active in small test cells. To test larger electrochemical cells, the production process needs to be scaled up and optimized. HDS is produced through magnesiothermic reduction of acid-etched halloysite. The reduction process is very exothermic and requires special consideration while being scaled up. A reactor and pressure release system were designed and fabricated to perform the reduction process in a safe manner. Various steps of the process were tested to determine their influence on the …


Tio2 Coating Methods On Sb2o3 And Their Use As Anode Material In Lithium-Ion Batteries, Kithzia Czarina Gomez Jul 2023

Tio2 Coating Methods On Sb2o3 And Their Use As Anode Material In Lithium-Ion Batteries, Kithzia Czarina Gomez

Theses and Dissertations

The following thesis is concentrated on the development of TiO2Sb2O3 composite material through the hydrolysis of TiCl4 to be applied as anode material for lithium-ion batteries. Antimony (Sb) has been a material of interest due to its high capacity and good chemical properties. The TiO2 accommodated the harsh volume expansion that Sb encounters during the alloying process while still preserving the high capacity offered by Sb. Its electrochemical performance exhibited a stabilized capacity of 523 mAhg-1 after reaching 40 cycles with a capacity loss of 2.4% till reaching 100 cycles. High reversible capacity characteristics were present with an initial capacity …


Battery Design, Construction, And Characterization For Small Motor Use Focusing On Anodic Zinc For Electron Flow, Amber Veach May 2023

Battery Design, Construction, And Characterization For Small Motor Use Focusing On Anodic Zinc For Electron Flow, Amber Veach

Chemical Engineering Undergraduate Honors Theses

This thesis explores the construction, characterization, and application of anodic zinc batteries for powering a small electric motor for the ChemE Car competition. Two zinc galvanic cell batteries were studied: zinc-carbon and zinc-air batteries. Prototype batteries were constructed and tested for voltage, amperage, and power production. In the zinc-carbon trials, a 3:1 mixture of manganese dioxide and graphite was determined to be the best cathode for power production. The size which allowed for sufficient power while maintaining the smallest footprint on the car was a zinc can six cm tall and two cm in diameter. Analysis of paper zinc-air battery …


Understanding And Controlling Failure Mechanisms Of The Zinc Anode For Rechargeable Alkaline Batteries, Michael J. D'Ambrose Jan 2022

Understanding And Controlling Failure Mechanisms Of The Zinc Anode For Rechargeable Alkaline Batteries, Michael J. D'Ambrose

Dissertations and Theses

In the coming years, the transformation of the electric grid will be in part enabled by safe, low-cost, and reliable large-scale rechargeable battery energy storage systems. Zinc (Zn) alkaline electrodes hold great importance and promise in the battery technology community as they satisfy the safety and cost requirements, yet their behavior in real world application is still poorly understood.

Two experimental studies were carried out, the first of which investigates failure mechanisms and material evolution during cycling of 27 zinc-manganese dioxide (Zn-MnO2) cells in 37 wt% potassium hydroxide (KOH) electrolyte wherein the percent utilization of the theoretical capacity …


Synthesis And Characterization Of Centrifugally Spun Molybdenum-Based Nanomaterials For Lithium-Ion Batteries, Ramiro Gonzalez Jr. Dec 2021

Synthesis And Characterization Of Centrifugally Spun Molybdenum-Based Nanomaterials For Lithium-Ion Batteries, Ramiro Gonzalez Jr.

Theses and Dissertations

The work presented in this thesis focuses on the processing and development of transition metal compound composite fibers as anode materials for rechargeable lithium-ion batteries (LIBs). Among the transition metal compounds, molybdenum compounds have risen as promising candidates of advanced electrode materials, in view of their natural abundance, virtuous mechanical/thermal stability, rich chemistry, high theoretical specific capacity, and multiple oxidation states of Mo. The current work reports synthesize MoO2/C and MoO3/C composite fibers drawn from centrifugal spun ammonium molybdate/PAN precursor fibers, followed by a thermal treatment stabilizing in air and calcination under argon atmosphere. The weight ratios of (MoOx, 2 …


Anodic Dissolution Of Alloy Ak12m2 Doped By Antimony In Aqueous Solutions Of Sodium Chloride, H.M. Nazarov, Okil Osimi Mar 2020

Anodic Dissolution Of Alloy Ak12m2 Doped By Antimony In Aqueous Solutions Of Sodium Chloride, H.M. Nazarov, Okil Osimi

Gorniy vestnik Uzbekistana

The results of the study on the effect of antimony alloy anodic behavior AK12M2 alloy, in a neutral environment (at different concentrations - 0.03; 0.3 and 3.0% NaCl). It should be noted that in all cases, the corrosion potential of samples immersin into a solution after some time shifts in the positive direction and then stabilized. In this case, if the stabilization in undoped alloy corrosion potential is observed within 50 minutes, then in doped alloys it occurs twice as fast, within 25-30 minutes, indicating a relatively higher influence of antimony passivation additives.


Lithium Storage Performance Of High Capacity Material Si@CPzs In Lithium Ion Batteries, Qing-Nuan Zhang, Fang-Fang Zhang, Hong-Xia Li, Bing-Jun Yang, Xiao-Cheng Li, Juan Yang Feb 2020

Lithium Storage Performance Of High Capacity Material Si@CPzs In Lithium Ion Batteries, Qing-Nuan Zhang, Fang-Fang Zhang, Hong-Xia Li, Bing-Jun Yang, Xiao-Cheng Li, Juan Yang

Journal of Electrochemistry

Carbon layers with different thicknesses were introduced into the surfaces of silicon (Si) nanoparticles by sol-gel method using poly (cyclotriphosphazene-co-4, 4'-sulfonyldiphenol) as the carbon source. Technologies of X-ray diffraction, thermo-gravimetric analysis, Brunauer-Emmett-Teller and transmission electron microscopy were employed to analyze the structures and components of the as-prepared Si@CPZS composites. Electrochemical performance of Si@CPZS with different carbon thicknesses was studied. The results showed that Si@CPZS with carbon thickness of 10 nm possessed the best performance. Its capacity remained 940 mAh·g -1 after 290 cycles under 500 mA·g -1. As the addictive, the graphite-based anode contained 30% of Si@C …


Design Of X-Ray Source For Real-Time Computed Tomography, Wesley William Tucker Jan 2020

Design Of X-Ray Source For Real-Time Computed Tomography, Wesley William Tucker

Doctoral Dissertations

"The reduction of motion blur in computed tomography (CT) drives the current research for multisource CT. Due to their compact nature, the current multisource systems utilize stationary angled anodes. Unfortunately, these configurations neither simplify the imaging geometry, nor satisfy the need for managing the high thermal loads demanded by real-time CT (30 acquisition frames per second). To add to the current field of knowledge, two x-ray tube concepts are presented in this dissertation. First, a simulation of transient thermal analysis was performed on a compact transmission-type x-ray tube anode operating in pulse-mode. A correlation was found between deposited beam power …


Centrifugally Spun Α-Fe2o3/Tio2/Carbon Composite Fibers As Anode Materials For Lithium-Ion Batteries, Luis Zuniga, Gabriel Gonzalez, Roberto Orrostieta Chavez, Jason C. Myers, Timothy P. Lodge, Mataz Alcoutlabi Sep 2019

Centrifugally Spun Α-Fe2o3/Tio2/Carbon Composite Fibers As Anode Materials For Lithium-Ion Batteries, Luis Zuniga, Gabriel Gonzalez, Roberto Orrostieta Chavez, Jason C. Myers, Timothy P. Lodge, Mataz Alcoutlabi

Mechanical Engineering Faculty Publications and Presentations

We report results on the electrochemical performance of flexible and binder-free α-Fe2O3/TiO2/carbon composite fiber anodes for lithium-ion batteries (LIBs). The composite fibers were produced via centrifugal spinning and subsequent thermal processing. The fibers were prepared from a precursor solution containing PVP/iron (III) acetylacetonate/titanium (IV) butoxide/ethanol/acetic acid followed by oxidation at 200 °C in air and then carbonization at 550 °C under flowing argon. The morphology and structure of the composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), …


Strategies To Improve The Electrochemical Of Performance Transition Metal Compounds As Anode Materials For Li-Ion Batteries, Noemi Dominguez Jan 2019

Strategies To Improve The Electrochemical Of Performance Transition Metal Compounds As Anode Materials For Li-Ion Batteries, Noemi Dominguez

Open Access Theses & Dissertations

Nowadays, our society depends on fossil fuels as the main energy source. However, depletion, price fluctuations, and other concerns, such as global warming, have led to an exhaustive research for renewable energy resources. Here is where electrochemical energy systems play a critical role since they can provide power when renewable energy is not available. Among these electrochemical energy storage systems Li-ion batteries (LIBs) have shown higher volumetric, gravimetric, and power density capacities over other battery systems.

However, commercial LIBs are still relying on graphite base materials for the anode. However, graphite possesses a low specific capacity. Recently, transition metal compounds …


Synthesis Of Cose2-Snse2 Nanocube-Coated Nitrogen-Doped Carbon (Nc) As Anode For Lithium And Sodium Ion Batteries, Jin Bai, Huimin Wu, Shiquan Wang, Guangxue Zhang, Chuanqi Feng, Hua-Kun Liu Jan 2019

Synthesis Of Cose2-Snse2 Nanocube-Coated Nitrogen-Doped Carbon (Nc) As Anode For Lithium And Sodium Ion Batteries, Jin Bai, Huimin Wu, Shiquan Wang, Guangxue Zhang, Chuanqi Feng, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

CoSe2-SnSe2/NC nanocubes (CSNC@NC) coated by nitrogen-doped carbon (NC) were synthesized successfully by an ordinary pyrazole polymerization and carbonization process. In comparison with bare CSNC, the CSNC@NC composite exhibited good structural stability and improved electrical conductivity when used as anode. The CSNC@NC electrode showed a stable Li storage capacity (730.41 mAh g−1 over 100 cycles at 0.2 A g−1) and excellent rate performance (402.10 mAh g−1 at 2 A g−1). For Na storage, the discharge capacity could be maintained 279.3 mAh g−1 over 100 cycles at 0.2 A g−1; the lower capacity than that for Li storage maybe caused by the …


Synthesis And Design Of Metals Sulfide/Carbon Composite-Fibers Anodes For Lithium Ion Batteries, Jorge Lopez Dec 2018

Synthesis And Design Of Metals Sulfide/Carbon Composite-Fibers Anodes For Lithium Ion Batteries, Jorge Lopez

Theses and Dissertations

In this study, Forcespinning is used to produce Titanium sulfide (TiS2)/carbon composite fibers for use as lithium-ion battery anodes. The high surface area to volume ratio of the composite fibers can have a high impact on the ionic and electronic conductivity of the active materials leading to improved electrochemical performance of the battery. TiS2 nanoparticles were chosen as the active materials to produce Metal-Li-alloys/C composite fibers due to their high theoretical capacity and low volume change during charge/discharge cycles. The use of a 2-D layered structure of TiS2 nanoparticles in the carbon fiber matrix can greatly accommodate more Li-ions between …


Research Progresses In Improvement For Low Temperature Performance Of Lithium-Ion Batteries, Yue-Ru Gu, Wei-Min Zhao, Chang-Hu Su, Chuan-Jun Luo, Zhong-Ru Zhang, Xu-Jin Xue, Yong Yang Oct 2018

Research Progresses In Improvement For Low Temperature Performance Of Lithium-Ion Batteries, Yue-Ru Gu, Wei-Min Zhao, Chang-Hu Su, Chuan-Jun Luo, Zhong-Ru Zhang, Xu-Jin Xue, Yong Yang

Journal of Electrochemistry

Lithium-ion batteries (LIBs) have become a new research hotspot due to their high energy density and long service life. However, the temperature characteristics, especially the poor performance at low temperatures, have seriously limited their wider applications. In this report, the research progresses in the low temperature performance of LIBs are reviewed. The main existing limitations of LIBs at low temperatures were systematically analyzed, and followed by discussion on the recent improvements in low temperature performances by developing novel cathode, electrolyte, and anode materials. The developments for improving the low temperature performance of LIBs are prospected. The three most important factors …


Electrochemical Behaviors Of The Electrodes For Proton Conducting Intermediate Temperature Solid Oxide Fuel Cells (It-Sofc), Shichen Sun Oct 2018

Electrochemical Behaviors Of The Electrodes For Proton Conducting Intermediate Temperature Solid Oxide Fuel Cells (It-Sofc), Shichen Sun

FIU Electronic Theses and Dissertations

Proton conducting intermediate temperature (600oC-400oC) solid oxide fuel cells (IT-SOFC) have many potential advantages for clean and efficient power generation from readily available hydrocarbon fuels. However, it still has many unsolved problems, especially on the anode where the fuel got oxidized and the cathode where oxygen got reduced. In this study, for the anode, the effects of hydrogen sulfite (H2S) and carbon dioxide (CO2) as fuel contaminants were studied on the nickel (Ni) based cermet anode of proton conducting IT-SOFC using proton conducting electrolyte of BaZr0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb). Both low-ppm level H2S and low-percentage level CO2 caused similar poisoning effects on …


Co3(Hcoo)6@Rgo As A Promising Anode For Lithium Ion Batteries, Heng Jiang, Jing-Min Fan, Ming-Sen Zheng, Quan-Feng Dong Jun 2018

Co3(Hcoo)6@Rgo As A Promising Anode For Lithium Ion Batteries, Heng Jiang, Jing-Min Fan, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

Metal–organic framework(MOF) is a kind of novel electrode materials for lithium ion batteries. Here, a composite material Co3(HCOO)6@rGO was synthesized for the first time by in situ loading of Co3(HCOO)6 on rGO (reduced oxide graphene) through a solution chemistry method. As an anode material for lithium ion batteries, it exhibited an excellent cycle stability as well as a large reversible capacity of 926 mAh·g-1 at a current density of 500 mA·g-1 after 100 cycles within the voltage range of 0.02 ~ 3.0 V vs. Li/Li+ with a good rate capability. …


The Use Of Fe3o4/Carbon Composite Fibers As Anode Materials In Lithium Ion Batteries, Howard Campos, Jonathan Ayala, Carolina Valdes, Jason Parsons, Mataz Alcoutlabi Apr 2018

The Use Of Fe3o4/Carbon Composite Fibers As Anode Materials In Lithium Ion Batteries, Howard Campos, Jonathan Ayala, Carolina Valdes, Jason Parsons, Mataz Alcoutlabi

Mechanical Engineering Faculty Publications and Presentations

In the present work, results on the synthesis and mass production of polymer/ceramic composite fibers through Forcespinning® (FS) are reported. Magnetite (Fe3O4), has been considered as a good anode material for Lithium‒Ion Batteries (LIBs) due to its high theoretical capacity (~924 mAhg-1), low cost, and low toxicity. The Fe3O4/carbon composite, in the present study, was achieved through Forcespinning iron (III) acetylacetonate /polyacrylonitrile (PAN) precursor solution with stabilization in air at 280°C followed by carbonization at 600°C under argon. The electrochemical cyclic performance of Fe3O4/C composite fibers was investigated by galvanostatic charge/discharge experiments. The results showed the Fe3O4/C composite fiber anode …


In Operando Mechanism Analysis On Nanocrystalline Silicon Anode Material For Reversible And Ultrafast Sodium Storage, Lei Zhang, Xianluo Hu, Chaoji Chen, Haipeng Guo, Xiaoxiao Liu, Gengzhao Xu, Haijian Zhong, Shuang Cheng, Peng Wu, Jiashen Meng, Yunhui Huang, Shi Xue Dou, Hua-Kun Liu Mar 2018

In Operando Mechanism Analysis On Nanocrystalline Silicon Anode Material For Reversible And Ultrafast Sodium Storage, Lei Zhang, Xianluo Hu, Chaoji Chen, Haipeng Guo, Xiaoxiao Liu, Gengzhao Xu, Haijian Zhong, Shuang Cheng, Peng Wu, Jiashen Meng, Yunhui Huang, Shi Xue Dou, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

Presently, lithium-ion batteries (LIBs) are the most promising commercialized electrochemical energy storage systems. Unfortunately, the limited resource of Li results in increasing cost for its scalable application and a general consciousness of the need to find new type of energy storage technologies. Very recently, substantial effort has been invested to sodium-ion batteries (SIBs) due to their effectively unlimited nature of sodium resources. Furthermore, the potential of Li/Li+ is 0.3 V lower than that of Na/Na+, which makes it more effective to limit the electrolyte degradation on the outer surface of the electrode.[1] Nevertheless, one major obstacle for the commercial application …


Surfactant Driven Assembly Of Freeze-Casted, Polymer-Derived Ceramic Nanoparticles On Grapehene Oxide Sheets For Lithium-Ion Battery Anodes, Ali Zein Khater Jan 2018

Surfactant Driven Assembly Of Freeze-Casted, Polymer-Derived Ceramic Nanoparticles On Grapehene Oxide Sheets For Lithium-Ion Battery Anodes, Ali Zein Khater

Honors Undergraduate Theses

Traditional Lithium-Ion Batteries (LIBs) are a reliable and cost-efficient choice for energy storage. LIBs offer high energy density and low self-discharge. Recent developments in electric-based technologies push for replacing historically used Lead-Acid batteries with LIBs. However, LIBs do not yet meet the demands of modern technology. Silicon and graphene oxide (GO) have been identified as promising replacements to improve anode materials. Graphene oxide has a unique sheet-like structure that provides a mechanically stable, light weight material for LIB anodes. Due to its structure, reduced graphene oxide (rGO) is efficiently conductive and resistive to environmental changes. On the other hand, silicon-based …


Hierarchical Porous Nio/B-Nimoo4 Heterostructure As Superior Anode Material For Lithium Storage, Zhijian Wang, Shilin Zhang, Hai Zeng, Haimin Zhao, Wei Sun, Meng Jiang, Chuanqi Feng, Jianwen Liu, Tengfei Zhou, Yang Zheng, Zaiping Guo Jan 2018

Hierarchical Porous Nio/B-Nimoo4 Heterostructure As Superior Anode Material For Lithium Storage, Zhijian Wang, Shilin Zhang, Hai Zeng, Haimin Zhao, Wei Sun, Meng Jiang, Chuanqi Feng, Jianwen Liu, Tengfei Zhou, Yang Zheng, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Ternary transition metal oxides (TTMOs) have attracted considerable attention for rechargeable batteries because of their fascinating properties. However, the unsatisfactory electrochemical performance originating from the poor intrinsic electronic conductivity and inferior structural stability impedes their practical applications. Here, the novel hierarchical porous NiO/β-NiMoO4heterostructure is fabricated, and exhibits high reversible capacity, superior rate capability, and excellent cycling stability in Li-ion batteries (LIBs), which is much better than the corresponding single-phase NiMoO4and NiO materials. The significantly enhanced electrochemical properties can be attributed to its superior structural characteristics, including the large surface area, abundant pores, fast charge transfer, and catalytic effect of the …


Metal Sulfides As Anode For Lithium Ion And Sodium Ion Battery, Ali Abdulla Oct 2017

Metal Sulfides As Anode For Lithium Ion And Sodium Ion Battery, Ali Abdulla

Electronic Thesis and Dissertation Repository

Abstract

Nanomaterials have been studied intensively in the last decades due to their unique physical and chemical properties and their potential for applications in different domains. Among these applications, energy storage has become the center of focus by many research groups and companies to develop high efficiency and reliable energy devices such as the commercial lithium ion batteries (LIBs). However, LIBs has not yet met the growing requirements of the high demand for increasing energy density. More efforts are requested to improve the performance of the batteries by designing better electrode materials and increasing the battery safety. Another type of …


Phosphorus-Based Materials As The Anode For Sodium-Ion Batteries, Fuhua Yang, Hong Gao, Jun Chen, Zaiping Guo Jan 2017

Phosphorus-Based Materials As The Anode For Sodium-Ion Batteries, Fuhua Yang, Hong Gao, Jun Chen, Zaiping Guo

Australian Institute for Innovative Materials - Papers

No abstract provided.


Construction Of Sno2-Graphene Composite With Half-Supported Cluster Structure As Anode Toward Superior Lithium Storage Properties, Chengling Zhu, Zhixin Chen, Shenmin Zhu, Yao Li, Hui Pan, Xin Meng, Muhammad Imtiaz, Di Zhang Jan 2017

Construction Of Sno2-Graphene Composite With Half-Supported Cluster Structure As Anode Toward Superior Lithium Storage Properties, Chengling Zhu, Zhixin Chen, Shenmin Zhu, Yao Li, Hui Pan, Xin Meng, Muhammad Imtiaz, Di Zhang

Faculty of Engineering and Information Sciences - Papers: Part B

Inspired by nature, herein we designed a novel construction of SnO2 anodes with an extremely high lithium storage performance. By utilizing small sheets of graphene oxide, the partitioned-pomegranate-like structure was constructed (SnO2@C@half-rGO), in which the porous clusters of SnO2 nanoparticles are partially supported by reduced graphene oxide sheets while the rest part is exposed (half-supported), like partitioned pomegranates. When served as anode for lithium-ion batteries, SnO2@C@half-rGO exhibited considerably high specific capacity (1034.5 mAh g−1 after 200 cycles at 100 mA g−1), superior rate performance and remarkable durability (370.3 mAh g−1 …


Ultra-Light And Flexible Pencil-Trace Anode For High Performance Potassium-Ion And Lithium-Ion Batteries, Zhixin Tai, Yajie Liu, Qing Zhang, Tengfei Zhou, Zaiping Guo, Hua-Kun Liu, Shi Xue Dou Jan 2017

Ultra-Light And Flexible Pencil-Trace Anode For High Performance Potassium-Ion And Lithium-Ion Batteries, Zhixin Tai, Yajie Liu, Qing Zhang, Tengfei Zhou, Zaiping Guo, Hua-Kun Liu, Shi Xue Dou

Australian Institute for Innovative Materials - Papers

Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple friction drawing on filter paper with a commercial 8B pencil. Compared with the traditional anode using copper foil as current collector, this innovative current-collector-free design presents capacity improvement of over 200% by reducing the inert weight of the electrode. The as-prepared pencil-trace electrode exhibits excellent rate performance in potassium-ion batteries (KIBs), significantly better than in lithium-ion batteries (LIBs), with capacity retention of 66% for the KIB vs. 28% for the LIB …


Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt Aug 2016

Lignin-Based Li-Ion Anode Materials Synthesized From Low-Cost Renewable Resources, Nicholas William Mcnutt

Doctoral Dissertations

In today’s world, the demand for novel methods of energy storage is increasing rapidly, particularly with the rise of portable electronic devices, electric vehicles, and the personal consumption and storage of solar energy. While other technologies have arguably improved at a rate that is exponential in accordance with Moore’s law, battery technology has lagged behind largely due to the difficulty in devising new electric storage systems that are simultaneously high performing, inexpensive, and safe.

In order to tackle these challenges, novel Li-ion battery anodes have been developed at Oak Ridge National Laboratory that are made from lignin, a low-cost, renewable …


Sulfur Based Electrode Materials For Secondary Batteries, Yong Hao May 2016

Sulfur Based Electrode Materials For Secondary Batteries, Yong Hao

FIU Electronic Theses and Dissertations

Developing next generation secondary batteries has attracted much attention in recent years due to the increasing demand of high energy and high power density energy storage for portable electronics, electric vehicles and renewable sources of energy. This dissertation investigates sulfur based advanced electrode materials in Lithium/Sodium batteries. The electrochemical performances of the electrode materials have been enhanced due to their unique nano structures as well as the formation of novel composites.

First, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs were employed as a conductive host to entrap S/polysulfides in …


A Green And Facile Way To Prepare Granadilla-Like Silicon-Based Anode Materials For Li-Ion Batteries, Lei Zhang, Ranjusha Rajagopalan, Haipeng Guo, Xianluo Hu, S X. Dou, Hua-Kun Liu Jan 2016

A Green And Facile Way To Prepare Granadilla-Like Silicon-Based Anode Materials For Li-Ion Batteries, Lei Zhang, Ranjusha Rajagopalan, Haipeng Guo, Xianluo Hu, S X. Dou, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

A yolk-shell-structured carbon@void@silicon (CVS) anode material in which a void space is created between the inside silicon nanoparticle and the outer carbon shell is considered as a promising candidate for Li-ion cells. Untill now, all the previous yolk-shell composites were fabricated through a templating method, wherein the SiO2 layer acts as a sacrificial layer and creates a void by a selective etching method using toxic hydrofluoric acid. However, this method is complex and toxic. Here, a green and facile synthesis of granadilla-like outer carbon coating encapsulated silicon/carbon microspheres which are composed of interconnected carbon framework supported CVS nanobeads is reported. …


Si-Containing Precursors For Si-Based Anode Materials Of Li-Ion Batteries: A Review, Lei Zhang, Xiaoxiao Liu, Qianjin Zhao, Shi Xue Dou, Hua-Kun Liu, Yunhui Huang, Xianluo Hu Jan 2016

Si-Containing Precursors For Si-Based Anode Materials Of Li-Ion Batteries: A Review, Lei Zhang, Xiaoxiao Liu, Qianjin Zhao, Shi Xue Dou, Hua-Kun Liu, Yunhui Huang, Xianluo Hu

Australian Institute for Innovative Materials - Papers

Lithium-ion batteries with high energy density are in demand for consumer electronics, electric vehicles, and grid-scale stationary energy storage. Si is one of the most promising anode materials due to its extremely high specific capacity. However, the full application of Si-based anode materials is limited by poor cycle life and rate capability resulted from low ionic/electronic conductivity and large volume change over cycling. In recent years, great progress has been made in improving the performance of Si anodes by employing nanotechnology. The preparation methods are essentially important, in which the precursors used are crucial to design and control the microstructure …


Mos2 With An Intercalation Reaction As A Long-Life Anode Material For Lithium Ion Batteries, Zhe Hu, Qiannan Liu, Weiyi Sun, Weijie Li, Zhanliang Tao, Shulei Chou, Jun Chen, S X. Dou Jan 2016

Mos2 With An Intercalation Reaction As A Long-Life Anode Material For Lithium Ion Batteries, Zhe Hu, Qiannan Liu, Weiyi Sun, Weijie Li, Zhanliang Tao, Shulei Chou, Jun Chen, S X. Dou

Australian Institute for Innovative Materials - Papers

MoS2 with expanded layers was synthesized and characterized as an anode material for lithium ion batteries in an ether-based electrolyte by cutting off the terminal discharge voltage at 1.0 V to prevent a MoS2 conversion reaction. The as-prepared MoS2 achieved 96% capacity retention even after 1400 cycles and showed good performance in a full cell with LiCoO2 as the counter electrode.