Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 200

Full-Text Articles in Engineering

Multidisciplinary Reference Solutions For Performance-Optimized Aircraft Wings With Tailored Aerodynamic Load Distributions, Jeffrey D. Taylor Aug 2022

Multidisciplinary Reference Solutions For Performance-Optimized Aircraft Wings With Tailored Aerodynamic Load Distributions, Jeffrey D. Taylor

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Morphing wings, or wings that can change shape during flight, have the potential to substantially reduce the amount of fuel consumed by an aircraft over the course of its flight. However, the extent to which these wings can reduce fuel consumption depends on the design of the wing, including its aerodynamic efficiency and its structural layout, and how the aircraft flies, including its flight altitude and speed. Correctly predicting how these design and operational characteristics interact is critical to predicting how wing morphing may affect aircraft fuel consumption. Many computer prediction tools exist that include the effects of these interactions, …


Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley Aug 2022

Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley

Masters Theses

The rotor hub is one of the most important features of all helicopters, as it provides the pilot a means for controlling the vehicle by changing the characteristics of the main and tail rotors. The hub also provides a structural foundation for the rotors and allows for the rotor blades to respond to aerodynamic forces while maintaining controllability and stability. Due to the inherent geometry and high rate of rotation, the rotor hub in its current form acts a large bluff body and is the primary source of parasite drag on the helicopter, despite its relatively small size. The rotor …


Experimental Characterization Of Additively Manufactured Multi-Feather Wingtip Devices, Patricio Garzon Jul 2022

Experimental Characterization Of Additively Manufactured Multi-Feather Wingtip Devices, Patricio Garzon

Doctoral Dissertations and Master's Theses

Soaring birds have evolved to fly for long periods of time without flapping their wings. Inspired by the flight of these birds, the proposed thesis presents an experimental investigation focused on wingtip devices designed based on biomimicry. The overarching engineering objective was to reduce the induced drag as a means to improve the fuel efficiency via these experimental wingtips. An associated secondary objective was to establish a method for manufacturing complex structures suitable for wing tunnel testing. A manufacturing technique that involved using composite weaves to reinforce additively manufactured structures was developed. This technique has the potential to reduce manufacturing …


Disc Golf Trajectory Modelling Combining Computational Fluid Dynamics And Rigid Body Dynamics, Knut Erik Teigen Giljarhus Jun 2022

Disc Golf Trajectory Modelling Combining Computational Fluid Dynamics And Rigid Body Dynamics, Knut Erik Teigen Giljarhus

International Sports Engineering Association – Engineering of Sport

No abstract provided.


Aerodynamics And Aeroacoustics Optimization Of Vehicle’S Side Mirror Base And Exhaust Pipe, Moath Nayef Mohamed Zaareer Jun 2022

Aerodynamics And Aeroacoustics Optimization Of Vehicle’S Side Mirror Base And Exhaust Pipe, Moath Nayef Mohamed Zaareer

Theses

This thesis is concerned with studying two different vehicle parts in terms of aerodynamics and aeroacoustics. Two main factors determine the efficiency and luxury of the vehicle, the low aerodynamic forces and low noise emission. The aerodynamic drag coefficient is concerned with how easy a vehicle can travel through the air; the lower the value, the less fuel is needed to move the vehicle forward and less air resistance the vehicle faces. The aerodynamic lift coefficient is related to vehicle ground stability, and the more negative the value is, the higher the vehicle's stability. Moreover, the aeroacoustics is concerned with …


Seam Shifted Wake In The Magnus And Non-Magnus Directions, John W. Garrett May 2022

Seam Shifted Wake In The Magnus And Non-Magnus Directions, John W. Garrett

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

An experiment was done to look at the effect baseball seams can have on how a pitched baseball moves in flight. Both non-spinning and spinning baseballs were analyzed in this study. Data was taken and analyzed at 60, 90, and 110 MPH to determine the influence of velocity and altitude on the ability of seams to alter the trajectory of a pitched baseball. Additionally, a ball's spin causes movement in a certain direction that is dependent on the spin axis. A second focus of this study was on the effect of baseball seams changing the movement in the same direction …


A Study Of Wings With Constant And Variable Sweep For Aerodynamic Efficiency In Inviscid Flow, Bruno Moorthamers May 2022

A Study Of Wings With Constant And Variable Sweep For Aerodynamic Efficiency In Inviscid Flow, Bruno Moorthamers

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Wing sweep has been studied by industry and academia since the pioneering days of aviation for both high-speed and low-speed applications. In transonic and supersonic flight regimes it serves to delay the onset of compressibility effects and decrease wave drag. In subsonic conditions, flying wing designs sweep back the main lifting surface in such a way that it can be used for longitudinal stability and control, to allow for the elimination of a traditional empenage. This is desirable because it can decrease the aerodynamic drag. Sweep can also be seen in nature in the wings of birds and fins of …


Influence Of Wing Planform Shape On The Effectiveness Of A Fixed-Slot, Yuan Zhao Apr 2022

Influence Of Wing Planform Shape On The Effectiveness Of A Fixed-Slot, Yuan Zhao

Doctoral Dissertations and Master's Theses

This thesis report explores the effect of the Clark-Y wing geometry on lift and drag to use as a reference during aircraft design stage. The different characteristics investigated are fixed slot span, taper ratio, washout, and sweep angle. Plain wings, half slotted wings, and fully slotted wings were built in CATIA with an aspect ratio of 6 and different taper ratio, washout, and sweep angles. Using the CATIA models to generate the 3-D grids in Pointwise. All the simulations were tested in Ansys-Fluent under sea-level conditions with a Reynold number of 609000. The relationships between the aerodynamic characteristics and the …


Experimental Analysis And Numerical Investigation Of Aerodynamics Of Elevated Structures, Nourhan Abdelfatah Mar 2022

Experimental Analysis And Numerical Investigation Of Aerodynamics Of Elevated Structures, Nourhan Abdelfatah

FIU Electronic Theses and Dissertations

The vulnerability of low-rise residential buildings to extreme wind events, such as hurricanes, is an escalating concern due to the frequent failures and losses. Elevated low-rise structures are constructed to reduce the hydrodynamic load from surges and flooding during hurricanes. However, due to the current lack of information, wind loading on elevated coastal structures is not adequately addressed in current international guidelines. To address this knowledge gap, large-scale experimental studies were conducted to precisely determine wind effects on elevated houses with different numbers of stories and varying stilt heights. In this study, comparisons are presented on various tested configurations to …


Aeroelastic Analysis Of Small-Scale Aircraft, Kent Roberts Mar 2022

Aeroelastic Analysis Of Small-Scale Aircraft, Kent Roberts

Master's Theses

The structural design of flight vehicles is a balancing act between maximizing loading capability while minimizing weight. An engineer must consider not only the classical static structural yielding failure of a vehicle, but a variety of ways in which structural deformations can in turn, affect the loading conditions driving those deformations. Lift redistribution, divergence, and flutter are exactly such dynamic aeroelastic phenomena that must be properly characterized during the design of a vehicle; to do otherwise is to risk catastrophe. Relevant within the university context is the design of small-scale aircraft for student projects and of particular consideration, the DBF …


Characterization, Design, And Optimization Of Dual-Purpose Wind Turbines And Frost Protection Fans, Ethan Narad Feb 2022

Characterization, Design, And Optimization Of Dual-Purpose Wind Turbines And Frost Protection Fans, Ethan Narad

Master's Theses

This thesis report outlines the creation of a MATLAB tool to design reversible machines that can function as both wind turbines and as agricultural frost protection fans. Frost protection fans are used to prevent crop loss during radiative freeze events during which a temperature inversion is present. Such a dual-purpose machine fundamentally has the constraint that it must use symmetric airfoils, so a suite of tools for automatically designing an optimized wind turbine blade with symmetric airfoils using the Blade Element Momentum (BEM) theory approach is presented. The BEM code is then re-derived and adapted for use with a frost …


Hypersonic Conceptual Design Tool Comparison, James G. Wnek Jan 2022

Hypersonic Conceptual Design Tool Comparison, James G. Wnek

Browse all Theses and Dissertations

The many iterations needed to explore a design space in the conceptual design process preclude the use of time-consuming RANS CFD for all but a few flight conditions. This research focuses on identifying the level of fidelity needed to adequately predict the aerothermodynamic characteristics of hypersonic vehicles. Three tools with differing levels of fidelity – CBAERO, Cart3D, and Kestrel – were used to analyze the Generic Hypersonic Vehicle (GHV) at the design condition of Mach 5.85 and an off-design condition of Mach 4.5. The results are representative of the different design tools but are not definitive due to the mesh …


Airfoil Flow Optimized Control With An Upstream Cylinder, Nicole Steiner Dec 2021

Airfoil Flow Optimized Control With An Upstream Cylinder, Nicole Steiner

Fall Student Research Symposium 2021

The purpose of this research is to optimize the aerodynamic performance of an airfoil with an upstream cylinder by neural network artificial intelligence. The effects of an upstream oscillating cylinder on the aerodynamic performance of an airfoil are also studied. This paper reports the effects oscillating frequency of the cylinder and the Reynolds number on the lift/drag ratio of the airfoil. The frequency has a complicated correlation with the lift/drag ratio, while the Reynolds number is found to have a positive correlation with the lift/drag ratio. The optimized case is found to have a lift/drag ratio of 1.7319, which is …


Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel Dec 2021

Entropy-Based Analysis For Application To Highly Compressible Flows, Ethan A. Vogel

Doctoral Dissertations

Matrix normalizations are a critical component of mathematically rigorous aerodynamics analysis, especially where kinematic and thermodynamic behaviors are of interest. Here, a matrix normalization based around the entropy of a perturbation is derived according to the principles of mathematical entropy analysis and using a general definition of entropy amendable to physical phenomena such as thermal nonequilibrium and caloric and thermal imperfection. This normalization is shown to be closely related to the contemporary Chu energy normalization, expanding the range of validity of that normalization and clarifying the details of its interpretation. This relationship provides a basis for deriving other normalizations. Entropy …


Empirical Modeling Of Tilt-Rotor Aerodynamic Performance, Michael C. Stratton Oct 2021

Empirical Modeling Of Tilt-Rotor Aerodynamic Performance, Michael C. Stratton

Mechanical & Aerospace Engineering Theses & Dissertations

There has been increasing interest into the performance of electric vertical takeoff and landing (eVTOL) aircraft. The propellers used for the eVTOL propulsion systems experience a broad range of aerodynamic conditions, not typically experienced by propellers in forward flight, that includes large incidence angles relative to the oncoming airflow. Formal experiment design and analysis techniques featuring response surface methods were applied to a subscale, tilt-rotor wind tunnel test for three, four, five, and six blade, 16-inch diameter, propeller configurations in support of development of the NASA LA-8 aircraft. Investigation of low-speed performance included a maximum speed of 12 m/s and …


3d-Printed Morphing Wings For Controlling Yaw On Flying-Wing Aircraft, Benjamin C. Moulton Aug 2021

3d-Printed Morphing Wings For Controlling Yaw On Flying-Wing Aircraft, Benjamin C. Moulton

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The flaps on an airplane wing are used to control the aircraft during flight. These flaps traditionally have at most three articulation or hinge points. Recent studies have shown improved flap efficiency using a conformal flap, which deforms following a curved shape. Much of aircraft improvement comes through increasing its efficiency during flight. This efficiency is generally improved by decreasing the drag force on the aircraft. A potential solution to decrease drag is to remove additional lifting surfaces, such as the horizontal and vertical stabilizer ubiquitous on general aviation aircraft. These additional lifting surfaces are used to trim and control …


Integral Boundary Layer Methods In Python, Malachi Joseph Edland Aug 2021

Integral Boundary Layer Methods In Python, Malachi Joseph Edland

Master's Theses

This thesis presents a modern approach to two Integral Boundary Layer methods implemented in the Python programming language. This work is based on two 2D boundary layer methods: Thwaites' method for laminar boundary layer flows and Head's method for turbulent boundary layer flows. Several novel enhancements improve the quality and usability of the results. These improvements include: a common ordinary differential equation (ODE) integration framework that generalizes computational implementations of Integral Boundary Layer methods; the use of a dense output Runge-Kutta ODE solver that allows for querying of simulation results at any point with accuracy to the same order as …


Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph Jul 2021

Design And Flight-Path Simulation Of A Dynamic-Soaring Uav, Gladston Joseph

Doctoral Dissertations and Master's Theses

We address the development of a dynamic-soaring capable unmanned aerial vehicle (UAV) optimized for long-duration flight with no on-board power consumption. The UAV’s aerodynamic properties are captured with the integration of variable fidelity aerodynamic analyses. In addition to this, a 6 degree-of-freedom flight simulation environment is designed to include the effects of atmospheric wind conditions. A simple flight control system aids in the development of the dynamic soaring maneuver. A modular design paradigm is adopted for the aircraft dynamics model, which makes it conducive to use the same environment to simulate other aircraft models. Multiple wind-shear models are synthesized to …


Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel May 2021

Computational Investigation Of Perforated Plate Film Cooling Utilizing Conjugate Heat Transfer, Jonathan Sippel

Doctoral Dissertations and Master's Theses

The accuracy of modern state-of-practice computational fluid dynamics approaches in predicting the cooling effectiveness of a perforated plate film-cooling arrangement is evaluated in ANSYS Fluent. A numerical investigation is performed using the Reynolds Averaged Navier Stokes equations and compared to NASA Glenn’s available Turbulent Heat Flux 4 experimental measurements collected as a part of the Transformational Tools and Technologies Project. A multiphysics approach to model heat conduction through the solid geometry is shown to offer significant improvements in wall temperature and film effectiveness prediction accuracy over the standard adiabatic wall approach. Additionally, localized gradient-based grid adaption is analyzed using the …


Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi May 2021

Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research addressed the amount of electric power required to induce specific changes in lift force using a NACA 2127 airfoil with a chord length of ~28 mm, connected to a micro load cell, in a wind tunnel of 103 square centimeter cross-section. A DBD plasma actuator supplied by a ZVS driven high voltage pulsed DC circuit, operating at a frequency of 17.4 kHz, was utilized for voltages of up to 5000 V. Two configurations of electrode gapping were compared to determine the efficient use of power. The configuration with a gap of ~1 mm between the upstream and downstream …


Sedan Performance/Economy Rear Diffuser, Jacob Boucher Koris Apr 2021

Sedan Performance/Economy Rear Diffuser, Jacob Boucher Koris

Thinking Matters Symposium

This project consists of designing in SolidWorks a model of the performance/fuel economy diffuser. The design is modeled with an Ahmed body (recommended shape for CFD testing vehicles) and the diffuser will be applied to the bottom of the rear bumper of the car. After this is done the model will be imported into ANSYS for CFD testing. Testing entails importing the model, then creating a mesh around the model, and then setting up the program to run analysis for calculating the coefficient of drag. Then building this SolidWorks model as a full working prototype for actual road-testing purposes. With …


State Consistence Of Data-Driven Reduced Order Models For Parametric Aeroelastic Analysis, William C. Krolick, Jung I. Shu, Yi Wang, Kapil Pant Feb 2021

State Consistence Of Data-Driven Reduced Order Models For Parametric Aeroelastic Analysis, William C. Krolick, Jung I. Shu, Yi Wang, Kapil Pant

Faculty Publications

This paper investigates the state consistence of parametric data-driven reduced order models (ROMs) in a state-space form obtained by various system identification methods, including autoregressive exogenous (ARX) and subspace identification (N4SID), for aeroelastic analysis in varying flight conditions. The target flight envelop is first partitioned into discrete grid points, on each of which an aerodynamic ROM is constructed using system identification to capture the dependence of the generalized aerodynamic force on the generalized displacement of structural modes. High-fidelity aeroelastic modal perturbation simulations are used to generate the ROM training and verification data. Aerodynamic ROMs not on the grid point are …


Next-Generation Re-Entry Aerothermodynamic Modeling Of Space Debris Using Machine Learning, Nicholas Sia Jan 2021

Next-Generation Re-Entry Aerothermodynamic Modeling Of Space Debris Using Machine Learning, Nicholas Sia

Graduate Theses, Dissertations, and Problem Reports

The number of resident space objects re-entering the atmosphere is expected to rise with increased space activity over recent years and future projections. Predicting the survival and impact location of the medium to large sized re-entering objects becomes important as they can cause on ground casualties and damage to property. Uncertainties associated with the re-entry process makes necessary a probabilistic approach, which can be computationally expensive when using high-fidelity numerical methods for estimating aerothermodynamic properties. To date, object-oriented analysis is the dominant tool used for atmospheric re-entry modeling and simulation, where aerothermodynamic coefficients are used to determine the risk a …


Identification Of Wind-Induced Hazard Zones Impacting Uas Bridge Inspection, Jack J. Green, John Mott Jan 2021

Identification Of Wind-Induced Hazard Zones Impacting Uas Bridge Inspection, Jack J. Green, John Mott

International Journal of Aviation, Aeronautics, and Aerospace

Unmanned Aerial Systems (UAS) continue to grow in both popularity and utility within the national airspace system. The use of commercial UAS for civil inspection, specifically that of bridge structures, is becoming commonplace among practitioners and academics alike. The development of an integrated bridge-inspection hazard model provides a way for UAS operators to prepare for and respond to changing environmental conditions that could otherwise prevent a successful UAS flight. The interaction of wind-induced airflow with bridge surfaces creates an aerodynamic wake that can result in hazardous conditions for a UAS platform operating in close proximity. An analysis of this airflow …


Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne Jan 2021

Bicycle Wheel Aerodynamics Predictions Using Cfd: Efficiency Using Blade Element Method, Drew Vigne

Honors Undergraduate Theses

The cycling industry has long relied on expensive wind tunnel testing when designing aerodynamic products, particularly in the context of wheels which account for 10 to 15 percent of a cyclist's total aerodynamic drag. With the recent advent of Computational Fluid Dynamics (CFD), the industry now has an economical tool to supplement the wheel design process; however, the complex nature of rotating spoked wheels requires high resolution meshes to model at acceptable fidelity. This research investigates an alternative CFD method that lowers the computational cost of modeling aerodynamic bicycle wheels by modeling spokes using Blade Element Method (BEM). Two CFD …


Convective Heat Transfer Enhancement Of A Channel-Flow Using Horizontally-Oriented Piezoelectric Fans, Janak Tiwari Jan 2021

Convective Heat Transfer Enhancement Of A Channel-Flow Using Horizontally-Oriented Piezoelectric Fans, Janak Tiwari

Electronic Theses and Dissertations

Experimental and numerical studies were carried out to investigate the convection heat transfer enhancement of air channel flow using a piezoelectric fan, operated at 90.3 Hz. Its peak-to-peak displacement was increased up to 11.8 mm. The average velocity of channel flow was ranged up to 3 m/s, covering both laminar and turbulent flow regimes. The effects of fan location on the heat transfer performance were evaluated by changing the relative position of the fan tip to the heated surface. A maximum heat transfer enhancement of 102 % was obtained at the channel flow rate of 15 LPM. The fan was …


Comparative Study On Performance Accuracy Of Three Probe And Five Probe Flow Analysers For Wind Tunnel Testing, Akhila Rupesh Ms, J V Muruga Lal Jeyan Dr Jan 2021

Comparative Study On Performance Accuracy Of Three Probe And Five Probe Flow Analysers For Wind Tunnel Testing, Akhila Rupesh Ms, J V Muruga Lal Jeyan Dr

International Journal of Aviation, Aeronautics, and Aerospace

In the field of inviscid fluid flow studies, the theoretical concept has to be developed even more. In order to make it possible, it is very important to supplement the concepts with strong experimental results. While performing experimentation, various accepts of design can be determined with factors influencing the and also required modification can be recommended in a more systematic and economic manner. Also, the aim objective of the experiment is to extend the underlying theory and to produce new designs with improvements that can be great support to the advancement in technology. In experimental analysis, wind tunnels are used …


Numerical Analysis Of A Circulation Control Wing, Luke W. Bodkin Dec 2020

Numerical Analysis Of A Circulation Control Wing, Luke W. Bodkin

Master's Theses

The objective of this thesis was to develop an experimental method to research circulation control wings using numerical analysis. Specifically, it is of interest to perform 3D wind tunnel testing on a circulation control wing in the Cal Poly Low Speed Wind Tunnel (CPLSWT). A circulation control wing was designed and analyzed to determine the feasibility of this testing.

This study relied on computational fluid dynamics (CFD) simulations as a method to predict the flow conditions that would be seen in a wind tunnel test. A CFD simulation was created of a wing model in a wind tunnel domain. Due …


Field Testing The Effects Of Low Reynolds Number On The Power Performance Of The Cal Poly Wind Power Research Center Small Wind Turbine, John B. Cunningham Dec 2020

Field Testing The Effects Of Low Reynolds Number On The Power Performance Of The Cal Poly Wind Power Research Center Small Wind Turbine, John B. Cunningham

Master's Theses

This thesis report investigates the effects of low Reynolds number on the power performance of a 3.74 m diameter horizontal axis wind turbine. The small wind turbine was field tested at the Cal Poly Wind Power Research Center to acquire its coefficient of performance, p, vs. tip speed ratio, λ, characteristics. A description of both the wind turbine and test setup are provided. Data filtration and processing techniques were developed to ensure a valid method to analyze and characterize wind power measurements taken in a highly variable environment. The test results demonstrated a significant drop in the …


Minimum Induced Drag For Tapered Wings Including Structural Constraints, Jeffrey D. Taylor, Douglas F. Hunsaker Aug 2020

Minimum Induced Drag For Tapered Wings Including Structural Constraints, Jeffrey D. Taylor, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

LIFTING-LINE theory [1,2] is the foundation for much of our understanding of finite-wing aerodynamics. Solutions based on lifting-line theory are widely accepted and have been shown to be in good agreement with CFD [3-10]. From Prandtl’s analytic solution to the classical lifting-line equation [1,2], the wing section-lift distribution can be expressed as a Fourier series of the form [11]

bL~ (θ)/L = (4/π)[sin(θ) + Σn-2 Bnsin(nθ)]; θ = cos-1(-2z/b) (1)

where b is the wingspan, L~ is the local wing section lift, L is the total wing lift, z is the spanwise …