Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater Aug 2020

Studies Of Two-Phase Flow With Soluble Surfactant, Ryan Peter Atwater

Dissertations

Numerical methods are developed for accurate solution of two-phase flow in the zero Reynolds number limit of Stokes flow, when surfactant is present on a drop interface and in its bulk phase interior. The methods are designed to achieve high accuracy when the bulk Péclet number is large, or equivalently when the bulk phase surfactant has small diffusivity

In the limit of infinite bulk Péclet number the advection-diffusion equation that governs evolution of surfactant concentration in the bulk is singularly perturbed, indicating a separation of spatial scales. A hybrid numerical method based on a leading order asymptotic reduction in this …


Benchmarking Of A Mobile Phone Particle Image Velocimetry System, David Armijo Aug 2020

Benchmarking Of A Mobile Phone Particle Image Velocimetry System, David Armijo

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

One of the most important tools in a fluid dynamics laboratory is a particle image velocimetry (PIV) system. This system can measure the speed of a fluid flow simply by taking high-speed images of the motion of the fluid, then applying PIV cross-correlation software to calculate speed from the resulting images. The mI-PIV project is in the process of designing a new method of performing PIV by putting the cross-correlation software on a mobile phone application, called mobile Instructional PIV (mI-PIV). This system is an innovative stepping stone in making PIV systems more widely available. It is designed to be …


Fluted Films Caused By Gravity Driven Water Drainage From Vertical Tubes, Matthew B. Jones Aug 2020

Fluted Films Caused By Gravity Driven Water Drainage From Vertical Tubes, Matthew B. Jones

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

When a stationary mass of water in a vertical tube is suddenly released, it creates a variety of artistic shapes and behaviors as it escapes the tube exit. As the descending water accelerates in the tube, friction along the tube wall slows the outer radius, resulting in a moving film entrained on the tube that trails the main body of water. When this film exits the tube, surface tension, gravity, and inertia interact to cause the film to create a wide variety of shapes, including jets, tubes, water bells, champagne glasses, and bubbles; rich forms that appear in other natural …


Delaying Flow Separation Using Piezoelectric Actuators, Kenechukwu Okoye May 2020

Delaying Flow Separation Using Piezoelectric Actuators, Kenechukwu Okoye

Honors Theses

Flow separation causes aircraft to experience an increase in drag degrading their aviation performance. The goal of the study was to delay flow separation on an airfoil by embedding a high-frequency translational piezoelectric actuator along the surface of the airfoil. This study investigated the extent to which the high-frequency translational piezoelectric actuator displaces the flow separation downstream or prevents it altogether utilizing a fog-based flow visualization experiment. The actuators with two actuation surfaces were embedded on the suction surface of an Eppler 862 airfoil model and placed in a low-speed wind tunnel. Dry ice fog streams were injected into the …


Microfluidic Study Of The Electrocoalescence Of Aqueous Droplets In Crude Oil, Thomas Leary, Mohsen Yeganeh, Charles Maldarelli Mar 2020

Microfluidic Study Of The Electrocoalescence Of Aqueous Droplets In Crude Oil, Thomas Leary, Mohsen Yeganeh, Charles Maldarelli

Publications and Research

In electrocoalescence, an electric field is applied to a dispersion of conducting water droplets in a poorly conducting oil to force the droplets to merge in the direction of the field. Electrocoalescence is used in petroleum refining to separate water from crude oil and in droplet-based microfluidics to combine droplets of water in oil and to break emulsions. Using a microfluidic design to generate a two-dimensional (2D) emulsion, we demonstrate that electrocoalescence in an opaque crude oil can be visualized with optical microscopy and studied on an individual droplet basis in a chamber whose height is small enough to make …


Attainment Of Rigorous Thermodynamic Consistency And Surface Tension In Single-Component Pseudopotential Lattice Boltzmann Models Via A Customized Equation Of State, Cheng Peng, Luis F. Ayala, Zhicheng Wang, Orlando M. Ayala Jan 2020

Attainment Of Rigorous Thermodynamic Consistency And Surface Tension In Single-Component Pseudopotential Lattice Boltzmann Models Via A Customized Equation Of State, Cheng Peng, Luis F. Ayala, Zhicheng Wang, Orlando M. Ayala

Engineering Technology Faculty Publications

The lack of thermodynamic consistency is a well-recognized problem in the single-component pseudopotential lattice Boltzmann models which prevents them from replicating accurate liquid and vapor phase densities; i.e., current models remain unable to exactly match coexisting density values predicted by the associated thermodynamic model. Most of the previous efforts had attempted to solve this problem by introducing tuning parameters, whose determination required empirical trial and error until acceptable thermodynamic consistency was achieved. In this study, we show that the problem can be alternatively solved by properly designing customized equations of state (EOSs) that replace any cubic EOS of choice during …


Openfoam Simulations Of Late Stage Container Draining In Microgravity, Joshua Thomas Mccraney, Mark M. Weislogel, Paul Steen Jan 2020

Openfoam Simulations Of Late Stage Container Draining In Microgravity, Joshua Thomas Mccraney, Mark M. Weislogel, Paul Steen

Mechanical and Materials Engineering Faculty Publications and Presentations

In the reduced acceleration environment aboard orbiting spacecraft, capillary forces are often exploited to access and control the location and stability of fuels, propellants, coolants, and biological liquids in containers (tanks) for life support. To access the ‘far reaches’ of such tanks, the passive capillary pumping mechanism of interior corner networks can be employed to achieve high levels of draining. With knowledge of maximal corner drain rates, gas ingestion can be avoided and accurate drain transients predicted. In this paper, we benchmark a numerical method for the symmetric draining of capillary liquids in simple interior corners. The free surface is …