Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

Civil and Environmental Engineering

Concrete

Missouri University of Science and Technology

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Estimation Of Lubrication Layer Thickness And Composition Through Reverse Engineering Of Interface Rheometry Tests, Alexis Salinas, Dimitri Feys Apr 2020

Estimation Of Lubrication Layer Thickness And Composition Through Reverse Engineering Of Interface Rheometry Tests, Alexis Salinas, Dimitri Feys

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

During concrete pumping, a lubrication layer is formed near the pipe wall. Extensive research has been performed on measuring and modeling the properties of this layer and using these values to predict pumping pressures. However, there are numerous discussions in the literature about the composition and thickness of this layer: can it be considered mortar, a micromortar, or is it cement paste? In this paper, possible solutions for the thickness and composition of the lubrication layer are derived from interface rheometry tests. It is assumed that the lubrication layer is composed of one or more concentric layers of paste or …


Bond Behavior Of Advanced Fiber Reinforced Composite-Concrete Joints, Xingxing Zou Jan 2020

Bond Behavior Of Advanced Fiber Reinforced Composite-Concrete Joints, Xingxing Zou

Doctoral Dissertations

“Externally bonding advanced composite materials to concrete structures is an effective way to improve their strength, ductility, and durability. The interfacial bond behavior is fundamental to understand the overall structural performance of concrete structures strengthened with advanced composite materials. This study includes a comprehensive investigation of the bond behavior of composite-concrete joints with different fiber reinforced composite types. First, a direct approach to determine the bond-slip relationship for fiber reinforced cementitious matrix (FRCM)-concrete joints based on fiber strain measurements was proposed. Then, an analytical solution to predict the full-range response of FRCM-concrete joints was derived by assuming a trilinear bond-slip …