Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Tissue engineering

Discipline
Institution
Publication
Publication Type

Articles 1 - 17 of 17

Full-Text Articles in Engineering

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun Dec 2019

The Co-Delivery Of Syngeneic Adipose-Derived Stromal Cells And Macrophages On Decellularized Adipose Tissue Bioscaffolds For In Vivo Soft Tissue Regeneration, Hisham A. Kamoun

Electronic Thesis and Dissertation Repository

Decellularized adipose tissue (DAT) bioscaffolds are a promising platform for the delivery of pro-regenerative cell populations with the goal of promoting adipose tissue regeneration. The current study investigated the effects of seeding DAT bioscaffolds with syngeneic bone marrow-derived macrophages and/or adipose-derived stromal cells (ASCs) on in vivo soft tissue regeneration. Methods were established to derive the macrophages from MacGreen mice, which were dynamically seeded onto the DAT scaffolds alone or in combination with ASCs. Seeded and unseeded scaffolds were implanted subcutaneously into C57Bl/6 mice. At 2 and 4 weeks, cell infiltration, angiogenesis, and adipogenesis were analyzed through histology and immunohistochemistry. …


Controlling Strain Energy Density In 3d Cellular Collagen Constructs During Complex Loads, Katherine Hollar Dec 2019

Controlling Strain Energy Density In 3d Cellular Collagen Constructs During Complex Loads, Katherine Hollar

Boise State University Theses and Dissertations

Mechanical stimulation applied to damaged soft tissues, such as ligament, can promote tissue remodeling to accelerate healing. To help identify treatments that encourage ligament healing, bioreactors have been designed to subject 3D cellularized constructs to various loading conditions in order to determine the mechanical mechanisms that trigger cell-mediated repair. An innovative approach is to use a bioreactor to apply controlled states of biaxial stress to study the effects of strain energy density and distortion energy on cell activity. Tissue distortion has been linked to changes in the structure and function of ligament, yet the specific impact of distortion energy on …


Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo Oct 2019

Application Of Halloysite Nanotubes In Bone Disease Remediation And Bone Regeneration, Yangyang Luo

Doctoral Dissertations

Customized patient therapy has been a major research focus in recent years. There are two research fields that have made a significant contribution to realizing individualized-based treatment: targeted drug delivery and three-dimensional (3D) printing technology. With benefit from the advances in nanotechnology and biomaterial science, various drug delivery systems have been established to provide precise control of therapeutic agents release in time and space. The emergence of three-dimensional (3D) printing technology enables the fabrication of complicated structures that effectively mimic native tissues and makes it possible to print patient-specific implants. My dissertation research used a clay nanoparticle, halloysite, to develop …


3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan Sep 2019

3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP …


Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim Aug 2019

Investigation Of The Effect Of Age On Regenerative Outcomes Following Treatment Of Volumetric Muscle Loss Injuries, John Taehwan Kim

Graduate Theses and Dissertations

Volumetric muscle loss (VML) is a traumatic injury in skeletal muscle resulting in the bulk loss of more than 20% of the muscle’s volume. Included in the bulk loss of muscle is the skeletal muscle niche comprised of nerve bundles, vasculature, local progenitor cells, basal lamina, and muscle fibers, overwhelming innate repair mechanisms. The hallmark of VML injury is the excessive accumulation of non-contractile, fibrotic tissue and permanent functional deficits. Though predominant in the younger demographic, the elderly population is also captured within VML injuries. There are many factors that change with aging in skeletal muscle that may further hinder …


Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts Aug 2019

Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts

Graduate Theses and Dissertations

Volumetric muscle loss overwhelms skeletal muscle’s ordinarily capable regenerative machinery, resulting in fibrosis and severe functional deficits which have defied clinical repair strategies. My work spans the design and preclinical evaluation of implants intended to drive the cell community of injured muscle toward a regenerative state, as well as the development of an understanding of the molecular responses of this cell community to biomaterial interventions. I demonstrate a new class of biomaterial by leveraging the productive capacity of sacrificial hollow fiber membrane cell culture; I show specifically that unique threads of whole extracellular matrix can be isolated by solvent degradation …


Development Of A Novel Bioprinting System:Bioprinter, Bioink, Characterizationand Optimization, Chandler Alan Warr Aug 2019

Development Of A Novel Bioprinting System:Bioprinter, Bioink, Characterizationand Optimization, Chandler Alan Warr

Theses and Dissertations

The use of 3D printing in biological applications is a new field of study given that 3D printing technology has become more available and user friendly. Possible uses include using existing 3D printing polymers to use in extracorporeal or in vitro devices, like Lab-on-a-Chip, and the development of new biologically derived materials to print cell-containing constructs. The latter concept is what is more commonly known as bioprinting. Our research had the goal of developing a bioprinting system including the printer, a bioink, and a feedback system for printing parameter optimization which could be done cheaply and within the reach of …


Challenges For Natural Hydrogels In Tissue Engineering, Esmaiel Jabbari May 2019

Challenges For Natural Hydrogels In Tissue Engineering, Esmaiel Jabbari

Faculty Publications

Protein-based biopolymers derived from natural tissues possess a hierarchical structure in their native state. Strongly solvating, reducing and stabilizing agents, as well as heat, pressure, and enzymes are used to isolate protein-based biopolymers from their natural tissue, solubilize them in aqueous solution and convert them into injectable or preformed hydrogels for applications in tissue engineering and regenerative medicine. This review aims to highlight the need to investigate the nano-/micro-structure of hydrogels derived from the extracellular matrix proteins of natural tissues. Future work should focus on identifying the nature of secondary, tertiary, and higher order structure formation in protein-based hydrogels derived …


Challenges For Natural Hydrogels In Tissue Engineering, Esmaiel Jabbari May 2019

Challenges For Natural Hydrogels In Tissue Engineering, Esmaiel Jabbari

Faculty Publications

Protein-based biopolymers derived from natural tissues possess a hierarchical structure in their native state. Strongly solvating, reducing and stabilizing agents, as well as heat, pressure, and enzymes are used to isolate protein-based biopolymers from their natural tissue, solubilize them in aqueous solution and convert them into injectable or preformed hydrogels for applications in tissue engineering and regenerative medicine. This review aims to highlight the need to investigate the nano-/micro-structure of hydrogels derived from the extracellular matrix proteins of natural tissues. Future work should focus on identifying the nature of secondary, tertiary, and higher order structure formation in protein-based hydrogels derived …


Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad May 2019

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing …


PdmsStar-Peg Hydrogels Prepared Via Solvent-Induced Phase Separation (Sips) And Their Potential Utility As Tissue Engineering Scaffolds, B. M. Bailey, R. Fei, Dany J. Munoz Pinto, M. S. Hahn, M. A. Grunlan Apr 2019

PdmsStar-Peg Hydrogels Prepared Via Solvent-Induced Phase Separation (Sips) And Their Potential Utility As Tissue Engineering Scaffolds, B. M. Bailey, R. Fei, Dany J. Munoz Pinto, M. S. Hahn, M. A. Grunlan

Dany J. Munoz Pinto

Inorganic-organic hydrogels based on methacrylated star polydimethylsiloxane (PDMSstar-MA) and diacrylated poly(ethylene glycol) (PEG-DA) macromers were prepared via solvent-induced phase separation (SIPS). The macromers were combined in a dichloromethane precursor solution and sequentially photopolymerized, dried and hydrated. The chemical and physical properties of the hydrogels were further tailored by varying the number average molecular weight (Mn) of PEG-DA (Mn = 3.4k and 6k g mol-1) as well as the weight percent ratio of PDMSstar-MA (Mn = 7k g mol-1) to PEG-DA from 0:100 to 20:80. Compared to analogous hydrogels …


Characterization Of Sequential Collagen-Poly(Ethylene Glycol) Diacrylate Interpenetrating Networks And Initial Assessment Of Their Potential For Vascular Tissue Engineering, Dany J. Munoz Pinto, Andrea C. Jimenez-Vergara, T. P. Gharat, M. S. Hahn Apr 2019

Characterization Of Sequential Collagen-Poly(Ethylene Glycol) Diacrylate Interpenetrating Networks And Initial Assessment Of Their Potential For Vascular Tissue Engineering, Dany J. Munoz Pinto, Andrea C. Jimenez-Vergara, T. P. Gharat, M. S. Hahn

Dany J. Munoz Pinto

Collagen hydrogels have been widely investigated as scaffolds for vascular tissue engineering due in part to the capacity of collagen to promote robust cell adhesion and elongation. However, collagen hydrogels display relatively low stiffness and strength, are thrombogenic, and are highly susceptible to cell-mediated contraction. In the current work, we develop and characterize a sequentially-formed interpenetrating network (IPN) that retains the benefits of collagen, but which displays enhanced mechanical stiffness and strength, improved thromboresistance, high physical stability and resistance to contraction. In this strategy, we first form a collagen hydrogel, infuse this hydrogel with poly(ethylene glycol) diacrylate (PEGDA), and subsequently …


Disciplinary Learning From An Authentic Engineering Context, Catherine Langman, Judith Zawojewski, Patricia Mcnicholas, Ali Cinar, Eric Brey, Mustafa Bilgic, Hamidreza Mehdizadeh Jan 2019

Disciplinary Learning From An Authentic Engineering Context, Catherine Langman, Judith Zawojewski, Patricia Mcnicholas, Ali Cinar, Eric Brey, Mustafa Bilgic, Hamidreza Mehdizadeh

Journal of Pre-College Engineering Education Research (J-PEER)

This small-scale design study describes disciplinary learning in mathematical modeling and science from an authentic engineeringthemed module. Current research in tissue engineering served as source material for the module, including science content for readings and a mathematical modeling activity in which students work in small teams to design a model in response to a problem from a client. The design of the module was guided by well-established principles of model-eliciting activities (a special class of problem-solving activities deeply studied in mathematics education) and recently published implementation design principles, which emphasize the portability of model-eliciting activities to many classroom settings.

Two …


Exploration And Optimization Of Biomaterials And Cells Required For The Fabrication Of A "Cardiac Patch", Shweta Anil Kumar Jan 2019

Exploration And Optimization Of Biomaterials And Cells Required For The Fabrication Of A "Cardiac Patch", Shweta Anil Kumar

Open Access Theses & Dissertations

Cardiac failure induced by myocardial infarction is believed to be one of the primary causes of morbidity and mortality all over the world. Affecting more than 26 million people worldwide, its prevalence has been observed to increase steadily. Myocardial infarction, which intitially begins as the occlusion of of a coronary artery, results in the death of millions of cardiomyocytes by obstructing blood flow to the serviced regions of the myocardium. The dead myocardium is replaced by a dense,collagenous scar which reduces the contractility of the heart, gradually leading to heart attacks. Most of the existing treatment therapies are palliative in …


Enhanced Proangiogenic Activity Of Endothelial Cells In Response To Polyglutamate Domain-Modified Qk Peptides Delivered On Bone Grafting Materials, Nicholas Weldon Pensa Jan 2019

Enhanced Proangiogenic Activity Of Endothelial Cells In Response To Polyglutamate Domain-Modified Qk Peptides Delivered On Bone Grafting Materials, Nicholas Weldon Pensa

All ETDs from UAB

Over 2 million bone grafting procedures are performed annually. To meet the high demand for these surgeries, commercial grafting materials sourced from allograft, xenograft, and synthetic calcium phosphate have become widely popular clinically. One limitation of these grafts, however, is their lack of growth factors that drive angiogenesis during bone tissue regeneration. Insufficient revascularization of the injured bone tissue leads to poor fracture healing. However, reincorporating angiogenic factors on grafting materials has proven challenging due to limited surface interactions between the protein and mineral graft surface. To address this challenge, we have synthesized a polyglutamate domain to the VEGF mimetic …


Design And Mechanical Characterization Of 3d Printed Gradient Porosity Poly(Propylene Fumarate) Scaffolds, Andrea Felicelli Jan 2019

Design And Mechanical Characterization Of 3d Printed Gradient Porosity Poly(Propylene Fumarate) Scaffolds, Andrea Felicelli

Williams Honors College, Honors Research Projects

Worldwide incidence of bone disorders and conditions, an already prevalent problem, is expected to double by 2020 from the rate in 2013 due to factors such as higher life expectancies and lower levels of physical activity. Every year in the United States, over half a million patients receive bone defect repairs, with costs greater than $2.5 billion. Current repairs are typically done with bone grafts, which are often costly and can result in added complications in the donor surgical site. Tissue engineering, a growing field that seeks to assist and enhance tissue defect repairs through the use of synthetic materials, …


Bmp2-Derived Molecules For Increasing Osteoinductivity Of Bone Grafts To Enhance Bone Regeneration, Andrew Scott Curry Jan 2019

Bmp2-Derived Molecules For Increasing Osteoinductivity Of Bone Grafts To Enhance Bone Regeneration, Andrew Scott Curry

All ETDs from UAB

The “gold standard” of bone grafting materials is autograft. Unfortunately, autogenous bone must first be harvested from the patient, leading to complications such as donor site morbidity. Because of this, many surgeons rely on non-autogenous bone grafting materials. While these grafts are more available than autogenous bone, they require extensive processing which significantly reduces their osteoinductivity. Therefore, there is substantial interest in finding ways to add osteoinductive molecules to these grafts. Previously, our lab has focused on utilizing molecules derived from bone morphogenetic protein 2 (BMP2) with an attached hydroxyapatite-binding domain (polyglutamate) to anchor them onto bone grafting materials. Previous …