Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Gelatine Cavity Dynamics Of High-Speed Sphere Impact, Akihito Kiyama, Mohammad M. Mansoor, Nathan B. Spiers, Yoshiyuki Tagawa, Tadd T. Truscott Oct 2019

Gelatine Cavity Dynamics Of High-Speed Sphere Impact, Akihito Kiyama, Mohammad M. Mansoor, Nathan B. Spiers, Yoshiyuki Tagawa, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

We investigate the impact and penetration of a solid sphere passing through gelatine at various impact speeds up to 143.2 m s-1 Tests were performed with several concentrations of gelatine. Impacts for low elastic Froude number Fre a ratio between inertia and gelatine elasticity, resulted in rebound. Higher Fre values resulted in penetration, forming cavities with prominent surface textures. The overall shape of the cavities resembles those observed in water-entry experiments, yet they appear in a different order with respect to increasing inertia: rebound, quasi-seal, deep-seal, shallow-seal and surface-seal. Remarkably, similar to the WeBo phase …


An Investigation Into The Mechanisms Of Liquid Loading In Small-Diameter Vertical Pipes, Matt Malin Oct 2019

An Investigation Into The Mechanisms Of Liquid Loading In Small-Diameter Vertical Pipes, Matt Malin

Graduate Theses & Non-Theses

Most gas wells produce either condensed water or liquid hydrocarbons, which over time build up in the wellbore and eventually kill the well – a phenomenon called “liquid loading”. Industry operators have used a criterion based on Stoke’s Law (the Turner criterion) for predicting when liquid loading will begin to occur. However, this approach does not account for multiphase flow effects in the wellbore, causing the Turner criterion to give inconsistent results when applied in the field. This research proposes a 4-stage flow behavior model for gas-dominant flow based on flow morphology changes observed during two experiments conducted in 2.0-inch …


Multiphase Cfd Modeling In Particle-Laden Flows, Zhizhong Ding Aug 2019

Multiphase Cfd Modeling In Particle-Laden Flows, Zhizhong Ding

LSU Doctoral Dissertations

Multiphase modeling is prevalent and useful in solving problems involving multiphase interactions such as fluid and solid. Applications conclude but not limited to fluidized bed, hydraulic conveying, and many others. Modeling techniques with multiple scales can provide various states of details with diverse computational resources used. In this dissertation, two CFD multiphase models are used to disclose interaction details in the particulate system. Two-Fluid Model is used to solve pulsed fluidized bed problem and immersed boundary method based direct numerical method is used to solve particle’s behavior in shear flow. Getting a better understanding of these problems to help to …


On The Role Of Sidewalls In The Transition From Straight To Sinuous Bedforms, ‪Nadim Zgheib, S. Balachandar Aug 2019

On The Role Of Sidewalls In The Transition From Straight To Sinuous Bedforms, ‪Nadim Zgheib, S. Balachandar

Mechanical Engineering Faculty Publications and Presentations

We present results from direct numerical simulation on the transition from straight-crested to sinuous-crested bedforms. The numerical setup is representative of turbulent open channel flow over an erodible sediment bed at a shear Reynolds number of Reτ = 180. The immersed boundary method accounts for the presence of the bed. The simulations are two-way coupled such that the turbulent flow can erode and modify the bed, and in turn, the bed modifies the overlying flow. Coupling from the flow to the bed occurs through the Exner equation, while back coupling from the bed to the flow is achieved by …


Numerical Investigation Of Coalescence-Induced Self-Propelled Behavior Of Droplets On Non-Wetting Surfaces And Wedged Surfaces., Yan Chen May 2019

Numerical Investigation Of Coalescence-Induced Self-Propelled Behavior Of Droplets On Non-Wetting Surfaces And Wedged Surfaces., Yan Chen

Electronic Theses and Dissertations

When small drops coalesce on a superhydrophobic surface, the merged drop can jump away from the surface due to the surface energy released during the coalescence. This self-propelled behavior has been observed on various superhydrophobic surfaces and has potential applications in areas related to the heat and mass transfer, such as heat exchangers, anti-icing and anti-frost devices, thermal management and water harvesting. The jumping velocity model was obtained based on published experimental data and the balance of various energy terms described in previous studies. However, the self-propelled mechanism is still not fully understood. In this study, the self-propelled droplet phenomenon …


Cavitation Number As A Function Of Disk Cavitator Radius: A Numerical Analysis Of Natural Supercavitation, Reid Prichard Apr 2019

Cavitation Number As A Function Of Disk Cavitator Radius: A Numerical Analysis Of Natural Supercavitation, Reid Prichard

Senior Honors Theses

Due to the greater viscosity and density of water compared to air, the maximum speed of underwater travel is severely limited compared to other methods of transportation. However, a technology called supercavitation – which uses a disk-shaped cavitator to envelop a vehicle in a bubble of steam – promises to greatly decrease skin friction drag. While a large cavitator enables the occurrence of supercavitation at low velocities, it adds substantial unnecessary drag at higher speeds. Based on CFD results, a relationship between cavitator diameter and cavitation number is developed, and it is substituted into an existing equation relating drag coefficient …


The Effects Of Scale On Granular Mixing In A Double Screw Pyrolyzer, Breanna L. Marmur Apr 2019

The Effects Of Scale On Granular Mixing In A Double Screw Pyrolyzer, Breanna L. Marmur

Breanna L. Marmur

Granular mixing processes are important to many industries including the pharmaceutical, agricultural, and biotechnology industries. These processes often require both a high degree of homogeneity and a high degree of customizability. As granular mixing processes are so widely employed, a thorough understanding of the mixing dynamics is necessary to understand and control the resulting products. Research into granular mixing processes has been, thus far, largely focused on laboratory scale mixers with simple geometries, while actual industrial processes often require large mixers with complex geometries. Moreover, granular mixing processes are often very sensitive to changes in operating conditions and any solutions …


Transient Multiphase Flow Simulation For Unloading Of Frac Hit Gas Wells, Miguel Angel Cedeno Moreno Jan 2019

Transient Multiphase Flow Simulation For Unloading Of Frac Hit Gas Wells, Miguel Angel Cedeno Moreno

Doctoral Dissertations

"This work seeks to develop a fully step-by-step transient multiphase flow simulation valid for unloading gas wells using nitrogen. It studies the behavior of nitrogen for unloading horizontal gas wells with gas injection in the annulus. The work investigates unloading non-Newtonian fluids such as those which invade offset wells when a frac hit occurs during hydraulic fracturing operations in unconventional wells. The effect of varying tubing depth and injection pressure are included in the study.

Results show that as the plastic viscosity increases, the nitrogen volume and time to unload will be increased. As tubing depth increases, the nitrogen volume …


The Effects Of Low Aspect Ratio And Heat Exchanging Internals On The Bubble Properties And Flow Regime In A Pilot-Plant Bubble/Slurry Bubble Column For Fischer-Tropsch Synthesis, Hayder Al-Naseri Jan 2019

The Effects Of Low Aspect Ratio And Heat Exchanging Internals On The Bubble Properties And Flow Regime In A Pilot-Plant Bubble/Slurry Bubble Column For Fischer-Tropsch Synthesis, Hayder Al-Naseri

Doctoral Dissertations

"Fischer-Tropsch synthesis (F-T) is a process utilized to convert the syngas mixture of CO and H2 to synthetic fuel and chemicals that executed commercially by using the bubble/slurry bubble column reactor. The experimental results reveal that the investigated parameters, in terms the presence of internals, and reducing the aspect ratio and the solids loading, increase the local gas holdup, interfacial area, bubble passage frequency, and decrease the bubble rise velocity, bubble chord length. Meanwhile, the aspect ratio H/D = 4, and 5 provide enough height to established the fully developed flow regime. As a result of the variation in …