Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Mechanical Properties And Degradation Of High Capacity Battery Electrodes: Fundamental Understanding And Coping Strategies, Yikai Wang Jan 2019

Mechanical Properties And Degradation Of High Capacity Battery Electrodes: Fundamental Understanding And Coping Strategies, Yikai Wang

Theses and Dissertations--Chemical and Materials Engineering

Rechargeable lithium ion and lithium (Li) metal batteries with high energy density and stability are in high demand for the development of electric vehicles and smart grids. Intensive efforts have been devoted to developing high capacity battery electrodes. However, the known high capacity electrode materials experience fast capacity fading and have limited cycle life due to electromechanical degradations, such as fracture of Si-based electrodes and dendrite growth in Li metal electrodes. A fundamental understanding of electromechanical degradation mechanisms of high capacity electrodes will provide insights into strategies for improving their electrochemical performance. Thus, this dissertation focuses on mechanical properties, microstructure …


Deformation And Strength Characteristics Of Laves Phases In Titanium Alloys, Chirag D. Rabadia, Y. J. Liu, Liang-Yu Chen, Syed F. Jawed, L. Q. Wang, Hongqi Sun, Laichang Zhang Jan 2019

Deformation And Strength Characteristics Of Laves Phases In Titanium Alloys, Chirag D. Rabadia, Y. J. Liu, Liang-Yu Chen, Syed F. Jawed, L. Q. Wang, Hongqi Sun, Laichang Zhang

Research outputs 2014 to 2021

The superior reinforcement nature of Laves phases make them suitable for high-strength applications. Therefore, investigations on the deformation and strength characteristics of Laves phases are useful in development of an improved Laves phase-reinforced alloy. In this work, the Vickers micro-indentation method is used to evaluate and compare the deformation and strength characteristics of a hexagonal close-packed Laves phase (C14-type) in Ti-35Zr-5Fe-6Mn (wt%) and a face-centered cubic Laves phase (C15-type) in Ti-33Zr-7Fe-4Cr (wt%), considering the same volume fraction of Laves phase (~7.0%) in these alloys. Moreover, the effects of higher volume fraction of Laves phase (19.4%) on indentation-based deformation features are …


Nanoindentation Characterization On Local Plastic Response Of Ti-6al-4v Under High-Load Spherical Indentation, Yan Wen, Lechun Xie, Zhou Wang, Liqiang Wang, Weijie Lu, Laichang Zhang Jan 2019

Nanoindentation Characterization On Local Plastic Response Of Ti-6al-4v Under High-Load Spherical Indentation, Yan Wen, Lechun Xie, Zhou Wang, Liqiang Wang, Weijie Lu, Laichang Zhang

Research outputs 2014 to 2021

After high-load spherical indentation treatment, the variations of hardness on the plastic zone of Ti-6Al-4V were investigated via nanoindentation method. The hardness within the center of plastic zone was measured by nanoindenter, and the magnitude decreased gradually along the depth, which were caused by the different extent of plastic deformation under the residual imprint. The microstructure of indentation were observed using scanning electron microscope (SEM) before and after surface etching, and the results showed that the microhardness revealed the average hardness of α and β phases of Ti-6Al-4V. The maximum hardness reached 6.438 GPa in the depth of 132 μm. …