Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Software Design For Probabilistic Safety: Stochastic Reachability And Circadian Control, Joseph D. Gleason Nov 2019

Software Design For Probabilistic Safety: Stochastic Reachability And Circadian Control, Joseph D. Gleason

Electrical and Computer Engineering ETDs

Stochastic reachability is an important verification tool that provides probabilistic assurances of safety in a variety of contexts. In engineered systems, safety may be synonymous with the ability of the system to avoid "bad" constraints on the state space, that constitute collision, departure from a flight envelope, or other undesirable phenomenon. In biomedical systems, assurance of safety (such as the mandate to ``do no harm'') are considerably complicated by the fact that there is a lack of physics-driven models, extensive signal processing is needed to capture the underlying state of the system, and the stochasticity inherent to the system may …


Implementation Of A Scale Semi-Autonomous Platoon To Test Control Theory Attacks, Erik Miller Jul 2019

Implementation Of A Scale Semi-Autonomous Platoon To Test Control Theory Attacks, Erik Miller

Master's Theses

With all the advancements in autonomous and connected cars, there is a developing body of research around the security and robustness of driving automation systems. Attacks and mitigations for said attacks have been explored, but almost always solely in software simulations.

For this thesis, I led a team to build the foundation for an open source platoon of scale semi-autonomous vehicles. This work will enable future research into implementing theoretical attacks and mitigations. Our 1/10 scale car leverages an Nvidia Jetson, embedded microcontroller, and sensors. The Jetson manages the computer vision, networking, control logic, and overall system control; the embedded …


Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford May 2019

Motor Control Systems Analysis, Design, And Optimization Strategies For A Lightweight Excavation Robot, Austin Jerold Crawford

Graduate Theses and Dissertations

This thesis entails motor control system analysis, design, and optimization for the University of Arkansas NASA Robotic Mining Competition robot. The open-loop system is to be modeled and simulated in order to achieve a desired rapid, yet smooth response to a change in input. The initial goal of this work is to find a repeatable, generalized step-by-step process that can be used to tune the gains of a PID controller for multiple different operating points. Then, sensors are to be modeled onto the robot within a feedback loop to develop an error signal and to make the control system self-corrective …


Local And Central Controllers For Microgrids, Edgar Ariel Escala Calame May 2019

Local And Central Controllers For Microgrids, Edgar Ariel Escala Calame

Graduate Theses and Dissertations

The main objective of this thesis is to serve as a guide, so readers are able to learn about microgrids and to design simple controllers for different AC microgrid applications. In addition, this thesis has the objective to provide examples of simulation cases for the hierarchical structure of a basic AC microgrid which can be used as a foundation to build upon, and achieve more complex microgrid structures as well as more sophisticated power-converter control techniques.

To achieve these objectives, the modeling of voltage source converters and control design in the z-domain are presented. Moreover, the implementation and transient analysis …


Control Strategies For Multi-Evaporator Vapor Compression Cycles, Sunderlin D. Jackson Mar 2019

Control Strategies For Multi-Evaporator Vapor Compression Cycles, Sunderlin D. Jackson

Theses and Dissertations

Next-generation military aircraft must be able to handle highly transient thermal loads that exceed the ability of current aircraft thermal subsystems. Vapor compression cycle systems are a particular refrigeration technology that is an attractive solution for dealing with this challenge, due primarily to their high efficiency. However, there are several barriers to realizing the benefits of vapor cycles systems for controlling thermal loads in military aircraft. This thesis focuses on addressing the challenge of controlling vapor cycles in the presence of highly transient evaporator heat loads. Specifically, a linear quadratic regulator (LQR) is designed for a simple vapor cycle system, …


System Identification And Model-Based Control Of Quadcopter Uavs, Andrew P. Szabo Jan 2019

System Identification And Model-Based Control Of Quadcopter Uavs, Andrew P. Szabo

Browse all Theses and Dissertations

As control systems become more sophisticated, more accurate system models are needed for control law design and simulation. In this research, a nonlinear dynamic model of a quadcopter UAV is presented and model parameters are estimated off-line using in-flight experimental data. In addition, a model-based classical control law for the quadcopter UAV is designed, simulated, and then deployed in UAV flight tests. The intent of this research is to identify a model which may be simple enough to easily use for control law design, and accurate enough for simulation. In addition, a model-based classical control law is designed to for …