Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

3D printing

Discipline
Institution
Publication
Publication Type
File Type

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Application Of Micro-Scale 3d Printing In Pharmaceutics, Andrew Kjar, Yu Huang Aug 2019

Application Of Micro-Scale 3d Printing In Pharmaceutics, Andrew Kjar, Yu Huang

Biological Engineering Faculty Publications

3D printing, as one of the most rapidly-evolving fabrication technologies, has released a cascade of innovation in the last two decades. In the pharmaceutical field, the integration of 3D printing technology has offered unique advantages, especially at the micro-scale. When printed at a micro-scale, materials and devices can provide nuanced solutions to controlled release, minimally invasive delivery, high-precision targeting, biomimetic models for drug discovery and development, and future opportunities for personalized medicine. This review aims to cover the recent advances in this area. First, the 3D printing techniques are introduced with respect to the technical parameters and features that are ...


Cam-Based Passive Variable Friction Device For Structural Control, Austin Downey, Connor Theisen, Heather Murphy, Nicholas Anastasi, Simon Laflamme Jun 2019

Cam-Based Passive Variable Friction Device For Structural Control, Austin Downey, Connor Theisen, Heather Murphy, Nicholas Anastasi, Simon Laflamme

Civil, Construction and Environmental Engineering Publications

A solution to increasing the resiliency of civil structures with respect to natural and man-made hazards is the implementation of supplemental damping systems. These systems can be constructed using passive, active, and semi-active devices. In particular, passive devices are widely accepted in the field of structural engineering, because they do not require power to operate and can be holistically integrated into the structural design process. This paper investigates the use of 3D printing technology to expand on the possibilities in passive damping, notably in the fabrication of a variable friction device. This device uses a 3D printed cam with a ...


Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce May 2019

Mechanical Properties And Applications Of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing, Matthew J. Reich, Aubrey Woern, Nagendra Gautam Tanikella, Joshua M. Pearce

Michigan Tech Publications

Past work has shown that particle material extrusion (fused particle fabrication (FPF)/fused granular fabrication (FGF)) has the potential for increasing the use of recycled polymers in 3D printing. This study extends this potential to high-performance (high-mechanical-strength and heat-resistant) polymers using polycarbonate (PC). Recycled PC regrind of approximately 25 mm2 was 3D printed with an open-source Gigabot X and analyzed. A temperature and nozzle velocity matrix was used to find useful printing parameters, and a print test was used to maximize the output for a two-temperature stage extruder for PC. ASTM type 4 tensile test geometries as well as ...


Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad May 2019

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing ...


3d Printing A Microfluidic Chip Capable Of Droplet Emulsion Using Ninjaflex Filament, Robert Andrews May 2019

3d Printing A Microfluidic Chip Capable Of Droplet Emulsion Using Ninjaflex Filament, Robert Andrews

Mechanical Engineering Undergraduate Honors Theses

This paper details an investigation into methods and designs of 3D printing a microfluidic system capable of droplet emulsion using NinjaFlex filament. The specific field in which this paper’s experiment is rooted is dubbed “BioMEMS,” short for bio microelectromechanical systems. One prominent research area in BioMEMS is developing a “lab on a chip.” Essentially, the goal is to miniaturize common lab processes to the micro scale, rendering it possible to include these processes in a small chip. Reducing necessary sample sizes, shortening the reaction times of lab processes, and increasing mobility of lab processes can all be realized through ...


3d Printed Smart Mobile, Bingfang Chen May 2019

3d Printed Smart Mobile, Bingfang Chen

Publications and Research

The goal of this research project is to design and build a prototype of a smart mobile robot to participate and compete in IEEE Micro-mouse and similar competitions. The robot has to find its way out of a maze as quickly as possible, by exploring and learning the paths in the maze. 3D printing technology will be used to build a lightweight robot frame so that it can move at a fast speed.


Engineering Of Bio-Mimetic Substratum Topographies For Enhanced Early Colonization Of Filamentous Algae, Ali Khoshkhoo, Andres L. Carrano, David M. Blersch Jan 2019

Engineering Of Bio-Mimetic Substratum Topographies For Enhanced Early Colonization Of Filamentous Algae, Ali Khoshkhoo, Andres L. Carrano, David M. Blersch

Systems Science and Industrial Engineering Faculty Scholarship

No abstract provided.


Level-Set-Xfem-Density Topology Optimization Of Active Structures: Methods And Applications, Markus Josef Geiss Jan 2019

Level-Set-Xfem-Density Topology Optimization Of Active Structures: Methods And Applications, Markus Josef Geiss

Aerospace Engineering Sciences Graduate Theses & Dissertations

To unlock the potential of advanced manufacturing technologies like additive manufacturing, an inherent need for sophisticated design tools exists. In this thesis, a systematic approach for designing printed active structures using a combined level-set (LS) extended finite element (XFEM) density topology optimization (TO) scheme is developed. This combined scheme alleviates the downsides of both LS and density based TO approaches while building upon the advantages of either method. Thus, a superior design optimization approach is created, which, when coupled with the XFEM, yields a highly accurate physical modeling method. The unique capabilities of this combined approach include hole nucleation and ...


3d Printing Of Hybrid Mos2-Graphene Aerogels As Highly Porous Electrode Materials For Sodium Ion Battery Anodes, Emery Brown, Pengli Yan, Halil Tekik, Ayyappan Elangovan, Jian Wang, Dong Lin, Jun Li Jan 2019

3d Printing Of Hybrid Mos2-Graphene Aerogels As Highly Porous Electrode Materials For Sodium Ion Battery Anodes, Emery Brown, Pengli Yan, Halil Tekik, Ayyappan Elangovan, Jian Wang, Dong Lin, Jun Li

Mechanical & Materials Engineering Faculty Publications

This study reports a 3D freeze-printing method that integrates inkjet printing and freeze casting to control both the microstructure and macroporosity via formation of ice microcrystals during printing. A viscous aqueous ink consisting of a molecular MoS2 precursor (ammonium thiomolybdate) mixed with graphene oxide (GO) nanosheets is used in the printing process. Post-treatments by freeze-drying and reductive thermal annealing convert the printed intermediate mixture into a hybrid structure consisting of MoS2 nanoparticles anchored on the surface of 2D rGO nanosheets in a macroporous framework, which is fully characterized with FESEM, TEM, XRD, Raman spectroscopy and TGA. The resulting ...


Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu Jan 2019

Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

The objective of this study is to characterize the micromechanical properties of poly-L-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 μm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus ...


Developing A Commercial Product Using A Consumer Grade 3d Printer, Calvin Smith Jan 2019

Developing A Commercial Product Using A Consumer Grade 3d Printer, Calvin Smith

All Theses, Dissertations, and Other Capstone Projects

The development of affordable, quality, consumer grade 3D printers has allowed entrepreneurs to develop new products and start small businesses. As the print quality of consumer grade printers has improved entrepreneurs have been able to develop consumer quality products without the traditional expense of mass manufacturing. This change from mass manufacturing to small scale and custom production has allowed for the growth of small businesses. Websites such as www.etsy.com show hundreds of small businesses based on 3D printing, these businesses showcase thousands of products ranging from useful household items to cosplay. This thesis covers the process of a ...


Developing A Testing Instrument To Evaluate The Performance Of 3d-Printed Body-Powered Prosthetic Hands, Araz Al-Dawoodi Jan 2019

Developing A Testing Instrument To Evaluate The Performance Of 3d-Printed Body-Powered Prosthetic Hands, Araz Al-Dawoodi

All Theses, Dissertations, and Other Capstone Projects

A 3D printed prosthetic hand is an open source technology that became a good substitution for many products in the market. For many reasons, Low-cost, easy made / easy build. As an open source product, 3D printed prosthetic designs are available to anyone around the world, a good option for young children because they need to have a new prosthetic more frequent until they reach the adulthood age. Most families cannot pay a thousand dollars technology. From the research, it found that that there are not enough studies cover the open source wrist body-powered prosthetic. Other studies covered products used by ...


Characterization And Quality Assessment Of Smart Polymer Systems Fabricated By Using 3d Printing Technique, Carlos Alejandro Garcia Rosales Jan 2019

Characterization And Quality Assessment Of Smart Polymer Systems Fabricated By Using 3d Printing Technique, Carlos Alejandro Garcia Rosales

Open Access Theses & Dissertations

Shape memory polymers (SMPs) are classified as smart materials due to their inherent stimulus-induced response. SMP is capable of recovering its original shape from a high degree of deformation by applying an external stimulus such as thermal energy. Other stimuli are electricity, light, chemical, and magnetic field. Shape memory polymers (SMPs) and its fabrication process has recently attracted much attention as a result of their potential application as soft active materials. Demonstration of SMP systems fabricated via 3D printing technologies has been one of the most popular attempts. This Dissertation presents an integration of two commercial SMP materials (DiAPLEX and ...


A Study Of The Effect Of Heat Treatment On 3d Printed Pla Impact Strength, Suresh Thota Jan 2019

A Study Of The Effect Of Heat Treatment On 3d Printed Pla Impact Strength, Suresh Thota

Electronic Theses and Dissertations

Environmental conditions have a significant effect on the mechanical properties of various materials. Environmental parameters such as temperature and humidity have a major impact on mechanical properties of materials such as compressive strength, tensile strength, bending strength and impact strength. The purpose of this research is to study how temperature and humidity affect the impact strength of 3D printed PLA plastic. Impact strength is the ability of a material to absorb energy subjected to an impact load by a pendulum. In this research, 3D printing was employed to produce PLA specimens which were later used for different experimental testings. For ...