Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Series

PDF

Materials Science and Engineering

University of Kentucky

Biomedical materials

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Achieving Superelasticity In Additively Manufactured Niti In Compression Without Post-Process Heat Treatment, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Alejandro Hinojos, Ali Ramazani, Julia Kundin, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Jan 2019

Achieving Superelasticity In Additively Manufactured Niti In Compression Without Post-Process Heat Treatment, Narges Shayesteh Moghaddam, Soheil Saedi, Amirhesam Amerinatanzi, Alejandro Hinojos, Ali Ramazani, Julia Kundin, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Shape memory alloys (SMAs), such as Nitinol (i.e., NiTi), are of great importance in biomedical and engineering applications due to their unique superelasticity and shape memory properties. In recent years, additive manufacturing (AM) processes have been used to produce complex NiTi components, which provide the ability to tailor microstructure and thus the critical properties of the alloys, such as the superelastic behavior and transformation temperatures (TTs), by selection of processing parameters. In biomedical applications, superelasticity in implants play a critical role since it gives the implants bone-like behavior. In this study, a methodology of improving superelasticity in Ni-rich NiTi components …