Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 51 of 51

Full-Text Articles in Engineering

Algal Remediation Of Wastewater Produced From Hydrothermally Treated Septage, Kyle Mcgaughy, Ahmad Abu Hajer, Edward Drabold, David J. Bayless, M. Toufiq Reza Jun 2019

Algal Remediation Of Wastewater Produced From Hydrothermally Treated Septage, Kyle Mcgaughy, Ahmad Abu Hajer, Edward Drabold, David J. Bayless, M. Toufiq Reza

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Hydrothermal carbonization (HTC) is a promising technology to convert wet wastes like septic tank wastes, or septage, to valuable platform chemical, fuels, and materials. However, the byproduct of HTC, process liquid, often contains large amount of nitrogen species (up to 2 g/L of nitrogen), phosphorus, and a variety of organic carbon containing compounds. Therefore, the HTC process liquid is not often treated at wastewater treatment plant. In this study, HTC process liquid was treated with algae as an alternative to commercial wastewater treatment. The HTC process liquid was first diluted and then used to grow Chlorella sp. over a short …


Iterative Learning Control Of Single Point Incremental Sheet Forming Process Using Digital Image Correlation, Joseph D. Fischer, Mitchell R. Woodside, Mercedes M. Gonzalez, Nathan A. Lutes, Douglas A. Bristow, Robert G. Landers Jun 2019

Iterative Learning Control Of Single Point Incremental Sheet Forming Process Using Digital Image Correlation, Joseph D. Fischer, Mitchell R. Woodside, Mercedes M. Gonzalez, Nathan A. Lutes, Douglas A. Bristow, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Single Point Incremental Sheet Forming (SPIF) is a versatile forming process that has gained significant traction over the past few decades. Its increased formability, quick part adaption, and reduced set-up costs make it an economical choice for small batch and rapid prototype forming applications when compared to traditional stamping processes. However, a common problem with the SPIF process is its tendency to produce high geometric error due to the lack of supporting dies and molds. While geometric error has been a primary focus of recent research, it is still significantly larger for SPIF than traditional forming processes. In this paper, …


Bulk-Explosion-Induced Metal Spattering During Laser Processing, Cang Zhao, Qilin Guo, Xuxiao Li, Niranjan Parab, Kamel Fezzaa, Wenda Tan, Lianyi Chen, Tao Sun Jun 2019

Bulk-Explosion-Induced Metal Spattering During Laser Processing, Cang Zhao, Qilin Guo, Xuxiao Li, Niranjan Parab, Kamel Fezzaa, Wenda Tan, Lianyi Chen, Tao Sun

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Spattering has been a problem in metal processing involving high-power lasers, like laser welding, machining, and recently, additive manufacturing. Limited by the capabilities of in situ diagnostic techniques, typically imaging with visible light or laboratory x-ray sources, a comprehensive understanding of the laser-spattering phenomenon, particularly the extremely fast spatters, has not been achieved yet. Here, using MHz single-pulse synchrotron-x-ray imaging, we probe the spattering behavior of Ti-6Al-4V with micrometer spatial resolution and subnanosecond temporal resolution. Combining direct experimental observations, quantitative image analysis, as well as numerical simulations, our study unravels a novel mechanism of laser spattering: The bulk explosion of …


A Hybrid Process Integrating Reverse Engineering, Pre-Repair Processing, Additive Manufacturing, And Material Testing For Component Remanufacturing, Xinchang Zhang, Wenyuan Cui, Wei Li, Frank W. Liou Jun 2019

A Hybrid Process Integrating Reverse Engineering, Pre-Repair Processing, Additive Manufacturing, And Material Testing For Component Remanufacturing, Xinchang Zhang, Wenyuan Cui, Wei Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Metallic components can gain defects such as dents, cracks, wear, heat checks, deformation, etc., that need to be repaired before reinserting into service for extending the lifespan of these parts. In this study, a hybrid process was developed to integrate reverse engineering, pre-repair processing, additive manufacturing, and material testing for the purpose of part remanufacturing. Worn components with varied defects were scanned using a 3D scanner to recreate the three-dimensional models. Pre-repair processing methods which include pre-repair machining and heat-treatment were introduced. Strategies for pre-repair machining of defects including surface impact damage, surface superficial damage and cracking were presented. Pre-repair …


Generation Of Nondiffracting Vector Beams With Ring-Shaped Plasmonic Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao Jun 2019

Generation Of Nondiffracting Vector Beams With Ring-Shaped Plasmonic Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Nondiffracting Bessel, Mathieu, and Weber vector beams are generated by using ring-shaped plasmonic geometric metasurfaces. The nondiffracting vector beam is produced by the superposition of two off-axis right-handed and left-handed circularly polarized nondiffracting scalar beams described by the Whittaker integral, which are simultaneously generated by a single metasurface with the ring-shaped phase profile. The polarization states of the generated nondiffracting vector beams are analyzed by the Stokes parameters and the orbital angular momentum states are measured by the beam interference. In addition, the selfhealing properties of nondiffracting vector beams are further demonstrated, showing that not only the beam profiles but …


Analysis Of Geometric Accuracy And Thickness Reduction In Multistage Incremental Sheet Forming Using Digital Image Correlation, Mercedes M. Gonzalez, Nathan A. Lutes, Joseph D. Fischer, Mitchell R. Woodside, Douglas A. Bristow, Robert G. Landers Jun 2019

Analysis Of Geometric Accuracy And Thickness Reduction In Multistage Incremental Sheet Forming Using Digital Image Correlation, Mercedes M. Gonzalez, Nathan A. Lutes, Joseph D. Fischer, Mitchell R. Woodside, Douglas A. Bristow, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Incremental Sheet Forming (ISF) is a freeform manufacturing method whereby a 3D geometry is created by progressively deforming a metal sheet with a single point tool following a defined trajectory. The thickness distribution of a formed part is a major consideration of the process and is believed to be improved by forming the geometry in multiple stages. This paper describes a series of experiments in which truncated cone geometries were formed using two multistage methods and compared to the same geometry formed using the traditional single stage method. The geometric accuracy and thickness distributions, including 3D thickness distribution plots, of …


Controlling Structures Of Battery Electrodes, Jonghyun Park, Jie Li May 2019

Controlling Structures Of Battery Electrodes, Jonghyun Park, Jie Li

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Manufacturing an electrode by forming an electrode structure on a grounded conductive substrate and applying a voltage across the electrode structure to generate an electric field through the electrode structure to arrange the dipolar particles within the electrode structure.


Fast Yield Estimation Of Multi-Band Patch Antennas By Pc-Kriging, Xiaosong Du, Leifur Leifsson, Slawomir Koziel May 2019

Fast Yield Estimation Of Multi-Band Patch Antennas By Pc-Kriging, Xiaosong Du, Leifur Leifsson, Slawomir Koziel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The PC-Kriging metamodeling method is proposed for yield estimation of multi-band patch antennas. PC-Kriging is a combination of polynomial chaos expansion (PCE) and Kriging metamodeling, where PCE is used as a trend function for the Kriging interpolation metamodel. The method is demonstrated on the Ishigami analytical function and a dual-band patch antenna. The PC-Kriging is shown to reach the prescribed accuracy limit with significantly fewer training points than both PCE and Kriging. This translates into considerable computational savings of yield estimation over alternative metamodel-based procedures and direct EM-driven Monte Carlo simulation. The saving are obtained without compromising evaluation reliability.


Mass Accommodation At A High-Velocity Water Liquid-Vapor Interface, J. Nie, A. Chandra, Z. Liang, P. Keblinski Apr 2019

Mass Accommodation At A High-Velocity Water Liquid-Vapor Interface, J. Nie, A. Chandra, Z. Liang, P. Keblinski

Mechanical and Aerospace Engineering Faculty Research & Creative Works

We Use Molecular Dynamics to Determine the Mass Accommodation Coefficient (MAC) of Water Vapor Molecules Colliding with a Rapidly Moving Liquid-Vapor Interface. This Interface Mimics Those Present in Collapsing Vapor Bubbles that Are Characterized by Large Interfacial Velocities. We Find that at Room Temperature, the MAC is Generally Close to Unity, and Even with Interfaces Moving at 10 Km/s Velocity, It Has a Large Value of 0.79. using a Simplified Atomistic Fluid Model, We Explore the Consequences of Vapor Molecule Interfacial Collision Rules on Pressure, Temperature, and Density of a Vapor Subjected to an Incoming High-Velocity Liquid-Vapor Interface.


Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers Apr 2019

Method And Apparatus For Fabricating Ceramic And Metal Components Via Additive Manufacturing With Uniform Layered Radiation Drying, Ming-Chuan Leu, Amir Ghazanfari, Wenbin Li, Greg Hilmas, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A freeform extrusion fabrication process for producing three - dimensional ceramic, metal and functionally gradient composite objects, including the steps of filling a plurality of paste sources with a respective plurality of aqueous paste compositions, operationally connecting respective syringes containing respective aqueous paste compositions to a mix ing chamber, moving a first aqueous paste composition from a first respective paste source into the mixing chamber, moving a second aqueous paste composition from a second respective paste source into the mixing chamber, mixing the first and second aqueous paste compositions to define a first admixture having a first admixture composition, extruding …


Manipulating Transverse Photovoltage Across Plasmonic Triangle Holes Of Symmetry Breaking, Marjan Akbari, Jie Gao, Xiaodong Yang Apr 2019

Manipulating Transverse Photovoltage Across Plasmonic Triangle Holes Of Symmetry Breaking, Marjan Akbari, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The transverse photo-induced voltages generated by the photon drag effect under normally and obliquely incident circularly polarized light across the plasmonic symmetry-breaking isosceles-triangle holes and right-triangle holes have been characterized. It is observed that the sign of transverse photovoltage flips when the incident circular polarization is switched for both types of plasmonic triangle holes. However, the unbalanced photovoltage between two circular polarizations is achieved across the plasmonic right-triangle holes, compared to the balanced photovoltage in the plasmonic isosceles-triangle holes. Such manipulation of the sign and the amplitude of transverse photovoltage is enabled by the broken symmetries of the electric and …


A Comprehensive Experimental And Modeling Study On Dissolution In Li-Ion Batteries, Yoon Koo Lee, Jonghyun Park, Wei Lu Apr 2019

A Comprehensive Experimental And Modeling Study On Dissolution In Li-Ion Batteries, Yoon Koo Lee, Jonghyun Park, Wei Lu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Dissolution is a critical challenge in metal oxide battery materials, which affects battery performance across multiple scales. At the particle level, the loss of active material as a result of dissolution directly results in capacity fade. At the electrode level, the re-deposition of dissolved metal ions onto the cathode increases cell polarization and hinders lithium transport. At the cell level, the dissolved ions further transport to and deposit on the anode, which consumes cycle-able lithium and leads to capacity fade. These processes lead to poor lithium reversibility, diffusivity, and conductivity. In this work, detailed experimental studies from the particle level …


A Comparison Of Static And Dynamic Functional Connectivities For Identifying Subjects And Biological Sex Using Intrinsic Individual Brain Connectivity, Sreevalsan S. Menon, K. Krishnamurthy Apr 2019

A Comparison Of Static And Dynamic Functional Connectivities For Identifying Subjects And Biological Sex Using Intrinsic Individual Brain Connectivity, Sreevalsan S. Menon, K. Krishnamurthy

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Functional magnetic resonance imaging has revealed correlated activities in brain regions even in the absence of a task. Initial studies assumed this resting-state functional connectivity (FC) to be stationary in nature, but recent studies have modeled these activities as a dynamic network. Dynamic spatiotemporal models better model the brain activities, but are computationally more involved. A comparison of static and dynamic FCs was made to quantitatively study their efficacies in identifying intrinsic individual connectivity patterns using data from the Human Connectome project. Results show that the intrinsic individual brain connectivity pattern can be used as a ‘fingerprint’ to distinguish among …


Optical Transportation And Accumulation Of Microparticles By Self-Accelerating Cusp Beams, Weiwei Liu, Xiaodong Yang, Jie Gao Apr 2019

Optical Transportation And Accumulation Of Microparticles By Self-Accelerating Cusp Beams, Weiwei Liu, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Most of the self-accelerating beams have monotonous single-channel bending structures, which greatly limit their applications in many fields such as microscopic imaging and particle manipulation. In this paper, the self-accelerating cusp beams with variable numbers of multichannel bending structures are generated to demonstrate the optical transportation and accumulation of micrometer polystyrene particles. The transportation velocity and optical force profiles of the microparticles moving along the bending channels of cusp beams are analyzed. Parallel particle transportation and particle accumulation manipulation from all the bending channels are further demonstrated. These results will inspire a lot of promising applications for self-accelerating beams especially …


Assessment Of Turbulence Models In A Hypersonic Cold-Wall Turbulent Boundary Layer, Junji Huang, Jorge-Valentino Bretzke, Lian Duan Mar 2019

Assessment Of Turbulence Models In A Hypersonic Cold-Wall Turbulent Boundary Layer, Junji Huang, Jorge-Valentino Bretzke, Lian Duan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this study, the ability of standard one- or two-equation turbulence models to predict mean and turbulence profiles, the Reynolds stress, and the turbulent heat flux in hypersonic cold-wall boundary-layer applications is investigated. The turbulence models under investigation include the one-equation model of Spalart-Allmaras, the baseline k-ω model by Menter, as well as the shear-stress transport k-ω model by Menter. Reynolds-Averaged Navier-Stokes (RANS) simulations with the different turbulence models are conducted for a flat-plate, zero-pressure-gradient turbulent boundary layer with a nominal free-stream Mach number of 8 and wall-to-recovery temperature ratio of 0.48, and the RANS results are compared with those …


On The Feasibility Of Tailoring Copper-Nickel Functionally Graded Materials Fabricated Through Laser Metal Deposition, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk Mar 2019

On The Feasibility Of Tailoring Copper-Nickel Functionally Graded Materials Fabricated Through Laser Metal Deposition, Sreekar Karnati, Yunlu Zhang, Frank W. Liou, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this study, pulse‐width modulation of laser power was identified as a feasible means for varying the chemical gradient in copper—nickel‐graded materials. Graded material deposits of 70 wt. %. copper‐30 wt. %. nickel on 100 wt. %. nickel and vice versa were deposited and characterized. The 70/30 copper—nickel weight ratio in the feedstock powder was achieved through blending elemental copper and 96 wt. %. Ni—Delero‐22 alloy. At the dissimilar material interface over the course of four layers, the duty cycle of power was ramped down from a high value to optimized deposition conditions. This change was theorized to influence the …


Substrate Support Ring For More Uniform Layer Thickness, Heng Pan, Lara Hawrylchak, Christopher S. Olsen Feb 2019

Substrate Support Ring For More Uniform Layer Thickness, Heng Pan, Lara Hawrylchak, Christopher S. Olsen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Embodiments of substrate support rings providing more uniform thickness of layers deposited or grown on a substrate are provided herein. In some embodiments, a substrate support ring includes: an inner ring with a centrally located support surface to support a substrate; and an outer ring extending radially outward from the support surface, wherein the outer ring comprises a reaction surface area disposed above and generally parallel to a support plane of the support surface, and wherein the reaction surface extends beyond the support surface by about 24 mm to about 45 mm.


A Framework For Process Inspection Of Metal Additive Manufacturing, Chih-Kun Cheng, Frank W. Liou, Yi-Chien Cheng, Sheng-Chih Shen Feb 2019

A Framework For Process Inspection Of Metal Additive Manufacturing, Chih-Kun Cheng, Frank W. Liou, Yi-Chien Cheng, Sheng-Chih Shen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper, we propose a process inspection framework for metal additive manufacturing (AM) processes. AM, also known as 3D printing, is the process of joining materials to make objects on the basis of 3D model data and is envisioned to play a strategic role in maintaining economic and scientific dominance. Different from conventional manufacturing methods, the AM process is a point-by-point and layer-by-layer manufacturing. Thus, there are many opportunities to generate a process error that can cause quality issues in an AM part. A systematic AM process inspection is needed to yield acceptable performance of the part. The critical …


Electrical/Chemical Thruster Using The Same Monopropellant And Method, Steven P. Berg, Joshua L. Rovey Jan 2019

Electrical/Chemical Thruster Using The Same Monopropellant And Method, Steven P. Berg, Joshua L. Rovey

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A thruster operable in a chemical mode or in an electrospray mode using the same liquid monopropellant for operation in both modes is described having a multiplicity of a microthrusters made of a catalytic material having a bore therethrough, where, when operated in the chemical mode, the microthrusters are heated to decompose the monopropellant the monopropellant flows therethrough to generate relatively high thrust. An extractor is positioned downstream of the outlet ends of the microthrusters, such that when the system is operated in its electrospray mode the flowrate of the monopropellant through the microthrusters is substantially lower than in the …


Fabrication Of Alcocrfeni High-Entropy Alloy Coating On An Aisi 304 Substrate Via A Cofe₂Ni Intermediate Layer, Wenyuan Cui, Sreekar Karnati, Xinchang Zhang, Elizabeth Burns, Frank W. Liou Jan 2019

Fabrication Of Alcocrfeni High-Entropy Alloy Coating On An Aisi 304 Substrate Via A Cofe₂Ni Intermediate Layer, Wenyuan Cui, Sreekar Karnati, Xinchang Zhang, Elizabeth Burns, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Through laser metal deposition, attempts were made to coat AlCoCrFeNi, a high-entropy alloy (HEA), on an AISI 304 stainless steel substrate to integrate their properties. However, the direct coating of the AlCoCrFeNi HEA on the AISI 304 substrate was found to be unviable due to cracks at the interface between these two materials. The difference in compositional change was suspected to be the source of the cracks. Therefore, a new transition route was performed by coating an intermediate layer of CoFe2Ni on the AISI 304 substrate. Investigations into the microstructure, phase composition, elemental composition and Vickers hardness were …


Enhanced Quantum Dots Spontaneous Emission With Metamaterial Perfect Absorbers, Wei Wang, Xiaodong Yang, Ting S. Luk, Jie Gao Jan 2019

Enhanced Quantum Dots Spontaneous Emission With Metamaterial Perfect Absorbers, Wei Wang, Xiaodong Yang, Ting S. Luk, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Metamaterial perfect absorbers (PAs) made of a hexagonal array of holes on Ag-SiO 2 -Ag thin films have been realized and utilized to enhance the spontaneous emission rate and photoluminescence intensity of CdSe/ZnS quantum dots (QDs) spin-coated on the absorber top surface. Perfect absorption of incoming light occurs at the wavelength where the impedance is matched to that of the free space. When QDs strongly excite both the electric and magnetic resonances at this perfect absorption wavelength, a significant Purcell effect on the spontaneous emission process and enhanced radiative outcoupling of photoluminescence intensity are expected. For perfect absorbers with near-unity …