Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Influence Of Single And Multiple Histidine Residues And Their Ionization Properties On Transmembrane Helix Dynamics, Orientations And Fraying, Fahmida Afrose Dec 2019

Influence Of Single And Multiple Histidine Residues And Their Ionization Properties On Transmembrane Helix Dynamics, Orientations And Fraying, Fahmida Afrose

Graduate Theses and Dissertations

Since aromatic and charged residues are often present in various locations of transmembrane helices of integral membrane proteins, their impacts on the molecular properties of transmembrane proteins and their interactions with lipids are of particular interest in many studies. In this work, I used solid-state deuterium NMR spectroscopy in designed model peptide GWALP23 [GGALW(LA)6LWLAGA] with selective deuterium labels to addresses the pH dependence and influence of single and multiple “guest” histidine residues in the orientation and dynamic behaviors of transmembrane proteins. The mutations include Gly to His (G2/22 to H2/22), Trp to His (W5/19 to H5/19) and Leu to His …


Applications Of Ionic Liquids In Membrane Separation, Mohanad Kamaz Dec 2019

Applications Of Ionic Liquids In Membrane Separation, Mohanad Kamaz

Graduate Theses and Dissertations

Ionic liquids represent an emerging attractive material in membrane technology. The central theme of this doctoral dissertation is to develope novel membranes using ionic liquids. Two different approaches were used to prepare ionic liquid membranes including the immobilization of ionic liquid within the membrane pores or the use of pressure assembly method to deposit a selective ionic liquid layer on the top membrane surface.

In chapter 2, imidazolium ionic liquids with three different alkyl halides were successfully synthesized and used to prepare supported ionic liquid membranes (SILMs). SILMs preraper were tested for aqueous and nonaqueous applications. For nonaqueous applications, the …


Functional Importance Of Lipin Phosphorylation, Stephanie Elizabeth Hood Dec 2019

Functional Importance Of Lipin Phosphorylation, Stephanie Elizabeth Hood

Graduate Theses and Dissertations

Highly conserved throughout evolution, lipins are dual functioning proteins found from yeast to humans. Functioning in the cytoplasm as phosphatidate phosphatase enzymes (PAP), lipins produce diacylglycerol that serves as a precursor for neutral fats and membrane phospholipids. Alternatively, nuclear lipins are responsible for the regulation of metabolic genes. Interestingly, both the mammalian lipin 1 paralog and the single Drosophila Lipin ortholog are highly phosphorylated proteins. Target of rapamycin (TOR) has previously been identified as one of the kinases that controls the subcellular localization of both lipin 1 and Drosophila Lipin. However, other serine and threonine kinases are predicted to be …


Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz Dec 2019

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz

Graduate Theses and Dissertations

Microdialysis (µD) sampling is a diffusion-limited sampling method that has been widely used in different biomedical fields for greater than 35 years. Device calibration for in vivo studies is difficult for current non-steady state analytes of interest correlated with both inflammatory response and microbial signaling molecules (QS); which exist in low ng/mL to pg/mL with molecular weights over a wide range of 170 Da to 70 kDa. The primary performance metric, relative recovery (RR), relating the collected sample to the extracellular space concentration varies from 10% to 60% per analyte even under controlled bench-top conditions. Innovations in microdialysis device design …


Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo Dec 2019

Interfacial Contact With Noble Metal - Noble Metal And Noble Metal - 2d Semiconductor Nanostructures Enhance Optical Activity, Ricardo Raphael Lopez Romo

Graduate Theses and Dissertations

Noble metal nanoparticles and two-dimensional (2D) transition metal dichalcogenide (TMD) crystals offer unique optical and electronic properties that include strong exciton binding, spin-orbital coupling, and localized surface plasmon resonance. Controlling these properties at high spatiotemporal resolution can support emerging optoelectronic coupling and enhanced optical features. Excitation dynamics of these optical properties on physicochemically bonded mono- and few-layer TMD crystals with metal nanocrystals and two overlapping spherical metal nanocrystals were examined by concurrently (i) DDA simulations and (ii) far-field optical transmission UV-vis spectroscopic measurements. Initially, a novel and scalable method to unsettle van der Waals bonds in bulk TMDs to prepare …


Development Of Forward Osmosis Based Separations: A Novel Approach In Membrane Technology, Yu-Hsuan Chiao Dec 2019

Development Of Forward Osmosis Based Separations: A Novel Approach In Membrane Technology, Yu-Hsuan Chiao

Graduate Theses and Dissertations

Tackling the worldwide severe water shortage, the membrane technology is considered to be the most efficient approach and hence, used widely as a cost-effective sustainable solution. “Forward osmosis (FO)” has been the major attention in recent time. FO uses osmotic pressure as the driving force to draw the water passing the membrane and achieve the desired separation performance. In general, it is considered to be a process with tremendous potential to resolve the present-day water shortage with extremely low energy consumption. However, the challenges of membrane and draw solution regeneration associated with FO processes must be conquered prior to their …


Theoretical Investigations Of The Electronic, Magnetic, And Thermoelectric Properties Of Transition-Metal Based Compounds, Haleoot Edaan Raad Dec 2019

Theoretical Investigations Of The Electronic, Magnetic, And Thermoelectric Properties Of Transition-Metal Based Compounds, Haleoot Edaan Raad

Graduate Theses and Dissertations

The electronic, magnetic, and thermoelectric properties of transition-metal based compounds were investigated by using the density functional theory and Boltzmann transport formalism. It was found that the Co-based Heusler compounds and InSe monochalcogenide are among the materials that may be used for future thermoelectric devices. Furthermore, the investigation showed that the quaternary Heusler compounds, such as, CoFeYGe, where Y is Ti or Cr, are half-metallic ferromagnetic materials with full electron spin polarization. The lattice thermal conductivity (κL) was found to decrease for these alloys as the temperature increases. The present investigation indicated that the phonon optical modes have a major …


A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh Aug 2019

A Study Of Protein And Peptide-Directed Nanoparticle Synthesis For Catalytic Materials, Abdollah Mosleh

Graduate Theses and Dissertations

Nanoparticles have received much attentions due to their unique properties that makes them suitable candidates for a broad range of applications. As the size of particles decreases, their surface area-to-volume ratio would increase which is the main cause of much attention. In addition to the size, their morphologies and compositions may also play important roles for defining unique properties. Nanoparticle synthesis include both bottom-up and top-down strategies. To control the process of inorganic nanoparticles synthesis one could follow the bottom-up approach to have atom-level control over their compositions, morphologies, phases, and sizes which is the subject of this work. Due …


Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts Aug 2019

Bioengineering Extracellular Matrix Scaffolds For Volumetric Muscle Loss, Kevin Roberts

Graduate Theses and Dissertations

Volumetric muscle loss overwhelms skeletal muscle’s ordinarily capable regenerative machinery, resulting in fibrosis and severe functional deficits which have defied clinical repair strategies. My work spans the design and preclinical evaluation of implants intended to drive the cell community of injured muscle toward a regenerative state, as well as the development of an understanding of the molecular responses of this cell community to biomaterial interventions. I demonstrate a new class of biomaterial by leveraging the productive capacity of sacrificial hollow fiber membrane cell culture; I show specifically that unique threads of whole extracellular matrix can be isolated by solvent degradation …


Self-Assembled Nanoantenna Enhance Optical Activity And Transport In Scalable Thin Films And Interfaces, Keith Richard Berry Jr. May 2019

Self-Assembled Nanoantenna Enhance Optical Activity And Transport In Scalable Thin Films And Interfaces, Keith Richard Berry Jr.

Graduate Theses and Dissertations

Continued population growth and the decrease of existing energy platforms demands long-term solutions for development and implementation of scalable plasmonic metamaterials for energy and agricultural applications. Self-assembled nanoantenna into random and ordered arrangements are advanced herein for optical and thermal enhancements in scalable thin film. An analytical approach to estimating the thermal dynamics of random arrangements of nanoantenna resulted in estimates within 30% across a range of geometric parameters, nanoantenna-containing media, and thermal parameters. Multimodal thermal dynamics of polymer thin films containing gold nanoparticles (AuNPs) were observed through the natural log of the dimensionless temperature driving force plotted versus time …