Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 55

Full-Text Articles in Engineering

Orbital Angular Momentum Transformation Of Optical Vortex With Aluminum Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao Dec 2019

Orbital Angular Momentum Transformation Of Optical Vortex With Aluminum Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The orbital angular momentum (OAM) transformation of optical vortex is realized upon using aluminum metasurfaces with phase distributions derived from the caustic theory. The generated OAM transformation beam has the well-defined Bessel-like patterns with multiple designed topological charges from -1 to +2.5 including both the integer-order and fractional-order optical vortices along the propagation. The detailed OAM transformation process is observed in terms of the variations of both beam intensity and phase profiles. The dynamic distributions of OAM mode density in the transformation are further analyzed to illustrate the conservation of the total OAM. The demonstration of transforming OAM states arbitrarily …


Spontaneous Emission Rate Enhancement With Aperiodic Thue-Morse Multilayer, Ling Li, Cherian J. Mathai, Shubhra Gangopadhyay, Xiaodong Yang, Jie Gao Dec 2019

Spontaneous Emission Rate Enhancement With Aperiodic Thue-Morse Multilayer, Ling Li, Cherian J. Mathai, Shubhra Gangopadhyay, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The emergence of multilayer metamaterials in the research field of enhancing spontaneous emission rates has recently received extensive attention. Previous research efforts mostly focus on periodic metal-dielectric multilayers in hyperbolic dispersion region; however, the influence of lattice order in subwavelength multilayers on spontaneous emission is rarely studied. Here, we observe the stronger Purcell enhancement of quantum dots coupled to the aperiodic metal-dielectric multilayer with Thue-Morse lattice order from elliptical to hyperbolic dispersion regions, compared to the periodic multilayer with the same metal filling ratio. This work demonstrates the potential of utilizing quasiperiodic metamaterial nanostructures to engineer the local density of …


Pore Elimination Mechanisms During 3d Printing Of Metals, S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Lianyi Chen, For Full List Of Authors, See Publisher's Website. Dec 2019

Pore Elimination Mechanisms During 3d Printing Of Metals, S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Lianyi Chen, For Full List Of Authors, See Publisher's Website.

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with complex geometries without the design constraints of traditional manufacturing routes. However, the parts printed by LPBF normally contain many more pores than those made by conventional methods, which severely deteriorates their properties. Here, by combining in-situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the LPBF process. We find that the high thermocapillary force, induced by the high temperature gradient in the laser interaction region, can rapidly eliminate pores from the …


Publisher Correction: Pore Elimination Mechanisms During 3d Printing Of Metals (Nature Communications, (2019), 10, 1, (3088), 10.1038/S41467-019-10973-9), S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Mimglei Qu, Luis I. Escano, Xianghui Xiao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen Dec 2019

Publisher Correction: Pore Elimination Mechanisms During 3d Printing Of Metals (Nature Communications, (2019), 10, 1, (3088), 10.1038/S41467-019-10973-9), S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Mimglei Qu, Luis I. Escano, Xianghui Xiao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The original version of this Article contained an error in Fig. 4. The x-axis labels in Fig. 4a, b were incorrectly labelled 'Diameter (mm)', rather than the correct 'Diameter (µm)'. This has been corrected in both the PDF and HTML versions of the Article.


Generation Of Polarization Singularities With Geometric Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao Dec 2019

Generation Of Polarization Singularities With Geometric Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The polarization singularities are directly generated by using plasmonic metasurfaces with the geometric phase profiles designed to form the Poincaré beams. Different morphologies of polarization topological structures of lemon, star, monstar, spiral, dipole and quadrupole are created by the superpositions of Laguerre-Gauss modes with different orders under orthogonal circular or linear polarization basis. The polarization ellipse patterns and topological features of the produced optical vector fields are analyzed to reveal the properties of the polarization singularities of C-points and L-lines, and the orbital angular momentum states are also measured. The demonstrated polarization singularities generated from the geometric metasurfaces will promise …


Second-Harmonic Optical Vortex Conversion From Ws₂ Monolayer, Arindam Dasgupta, Jie Gao, Xiaodong Yang Dec 2019

Second-Harmonic Optical Vortex Conversion From Ws₂ Monolayer, Arindam Dasgupta, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS2 monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS2 monolayer precisely determines the output circular …


3d Janus Plasmonic Helical Nanoapertures For Polarization-Encrypted Data Storage, Yang Chen, Xiaodong Yang, Jie Gao Dec 2019

3d Janus Plasmonic Helical Nanoapertures For Polarization-Encrypted Data Storage, Yang Chen, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Helical structures have attracted considerable attention due to their inherent optical chirality. Here, we report a unique type of 3D Janus plasmonic helical nanoaperture with direction-controlled polarization sensitivity, which is simply fabricated via the one-step grayscale focused ion beam milling method. Circular dichroism in transmission of as large as 0.72 is experimentally realized in the forward direction due to the spin-dependent mode coupling process inside the helical nanoaperture. However, in the backward direction, the nanoaperture acquires giant linear dichroism in transmission of up to 0.87. By encoding the Janus metasurface with the two nanoaperture enantiomers having specified rotation angles, direction-controlled …


Spatial Variation Of Vector Vortex Beams With Plasmonic Metasurfaces, Yuchao Zhang, Jie Gao, Xiaodong Yang Dec 2019

Spatial Variation Of Vector Vortex Beams With Plasmonic Metasurfaces, Yuchao Zhang, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the …


Trunk Velocity-Dependent Light Touch Reduces Postural Sway During Standing, Anirudh Saini, Devin Michael Burns, Darian Emmett, Yun Seong Song Nov 2019

Trunk Velocity-Dependent Light Touch Reduces Postural Sway During Standing, Anirudh Saini, Devin Michael Burns, Darian Emmett, Yun Seong Song

Psychological Science Faculty Research & Creative Works

Light Touch (LT) has been shown to reduce postural sway in a wide range of populations. While LT is believed to provide additional sensory information for balance modulation, the nature of this information and its specific effect on balance are yet unclear. In order to better understand LT and to potentially harness its advantages for a practical balance aid, we investigated the effect of LT as provided by a haptic robot. Postural sway during standing balance was reduced when the LT force (~ 1 N) applied to the high back area was dependent on the trunk velocity. Additional information on …


Transport Phenomena In The Knudsen Layer Near An Evaporating Surface, Eric Bird, Zhi Liang Oct 2019

Transport Phenomena In The Knudsen Layer Near An Evaporating Surface, Eric Bird, Zhi Liang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Using the Combination of the Kinetic Theory of Gases (KTG), Boltzmann Transport Equation (BTE), and Molecular Dynamics (MD) Simulations, We Study the Transport Phenomena in the Knudsen Layer Near a Planar Evaporating Surface. the MD Simulation is First Used to Validate the Assumption Regarding the Anisotropic Velocity Distribution of Vapor Molecules in the Knudsen Layer. based on This Assumption, We Use the KTG to Formulate the Temperature and Density of Vapor at the Evaporating Surface as a Function of the Evaporation Rate and the Mass Accommodation Coefficient (MAC), and We Use These Vapor Properties as the Boundary Conditions to Find …


A Study Of Brain Neuronal And Functional Complexities Estimated Using Multiscale Entropy In Healthy Young Adults, Sreevalsan S. Menon, K. Krishnamurthy Oct 2019

A Study Of Brain Neuronal And Functional Complexities Estimated Using Multiscale Entropy In Healthy Young Adults, Sreevalsan S. Menon, K. Krishnamurthy

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Brain complexity estimated using sample entropy and multiscale entropy (MSE) has recently gained much attention to compare brain function between diseased or neurologically impaired groups and healthy control groups. Using resting-state functional magnetic resonance imaging (rfMRI) blood oxygen-level dependent (BOLD) signals in a large cohort (n = 967) of healthy young adults, the present study maps neuronal and functional complexities estimated by using MSE of BOLD signals and BOLD phase coherence connectivity, respectively, at various levels of the brain’s organization. The functional complexity explores patterns in a higher dimension than neuronal complexity and may better discern changes in brain functioning. …


Three-Dimensional Rotation Of Paramagnetic And Ferromagnetic Prolate Spheroids In Simple Shear And Uniform Magnetic Field, Christopher A. Sobecki, Yanzhi Zhang, Cheng Wang Oct 2019

Three-Dimensional Rotation Of Paramagnetic And Ferromagnetic Prolate Spheroids In Simple Shear And Uniform Magnetic Field, Christopher A. Sobecki, Yanzhi Zhang, Cheng Wang

Mathematics and Statistics Faculty Research & Creative Works

We examine a time-dependent, three-dimensional rotation of magnetic ellipsoidal particles in a two-dimensional, simple shear flow and a uniform magnetic field. We consider that the particles have paramagnetic and ferromagnetic properties, and we compare their rotational dynamics due to the strengths and directions of the applied uniform magnetic field. We determine the critical magnetic field strength that can pin the particles' rotations. Above the critical field strength, the particles' stable steady angles were determined. In a weak magnetic regime (below the critical field strength), a paramagnetic particle's polar angle will oscillate toward the magnetic field plane while its azimuthal angle …


Strong Circular Dichroism In Chiral Plasmonic Metasurfaces Optimized By Micro-Genetic Algorithm, Zhigang Li, Daniel Rosenmann, David A. Czaplewski, Xiaodong Yang, Jie Gao Sep 2019

Strong Circular Dichroism In Chiral Plasmonic Metasurfaces Optimized By Micro-Genetic Algorithm, Zhigang Li, Daniel Rosenmann, David A. Czaplewski, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Strong circular dichroism in absorption in the near-infrared wavelength range is realized by designing binary-pattern chiral plasmonic metasurfaces via the micro-genetic algorithm optimization method. The influence of geometric parameter modifications in the binary-pattern nanostructures on the circular dichroism performance is studied. The strong circular dichroism in absorption is attributed to the simultaneous excitation and field interference of the resonant modes with relative phase delay under linearly polarized incident light. This work provides a universal design method toward the on-demand properties of chiral metasurfaces, which paves the way for future applications in chemical and biological sensing, chiral imaging and spectroscopy.


Frequency Inspection Of Additively Manufactured Parts For Layer Defect Identification, Aimee Allen, Kevin Johnson, Jason R. Blough, Andrew Barnard, Troy Hartwig, Ben Brown, David Soine, Tristan Cullom, Douglas A. Bristow, Robert G. Landers, Edward C. Kinzel Aug 2019

Frequency Inspection Of Additively Manufactured Parts For Layer Defect Identification, Aimee Allen, Kevin Johnson, Jason R. Blough, Andrew Barnard, Troy Hartwig, Ben Brown, David Soine, Tristan Cullom, Douglas A. Bristow, Robert G. Landers, Edward C. Kinzel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufactured (AM) parts are produced at low volume or with complex geometries. Identifying internal defects is difficult as current testing techniques are not optimized for AM processes. The goal of this paper is to evaluate defects on multiple parts printed on the same build plate. The technique used was resonant frequency testing with the results verified through Finite Element Analysis. From these tests, it was found that the natural frequencies needed to detect the defects were higher than the excitation provided by a modal hammer. The deficiencies in this range led to the development of other excitation methods. Based …


Effective Elastic Properties Of Additively Manufactured Metallic Lattice Structures: Unit-Cell Modeling, Okanmisope Fashanu, David Murphy, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, Ben Brown, John Porter Aug 2019

Effective Elastic Properties Of Additively Manufactured Metallic Lattice Structures: Unit-Cell Modeling, Okanmisope Fashanu, David Murphy, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, Ben Brown, John Porter

Materials Science and Engineering Faculty Research & Creative Works

Lattice structures are lightweight materials, which exhibit a unique combination of properties such as air and water permeability, energy and acoustic absorption, low thermal conductivity, and electrical insulation. In this work, unit-cell homogenization was used to predict the effective elastic moduli of octet-truss (OT) lattice structures manufactured using selective laser melting (SLM). OT structures were manufactured using a Renishaw AM 250 SLM machine with various relative densities. Compression test was carried out at strain rate 5 x 10-3 m-1 using an MTS frame. Finite element analysis was used in the determination of the OT’s effective elastic properties. Results …


In-Situ Local Part Qualification Of Slm 304l Stainless Steel Through Voxel Based Processing Of Swir Imaging Data, Cody S. Lough, Xin Wang, Robert G. Landers, Douglas A. Bristow, James A. Drallmeier, Edward C. Kinzel Aug 2019

In-Situ Local Part Qualification Of Slm 304l Stainless Steel Through Voxel Based Processing Of Swir Imaging Data, Cody S. Lough, Xin Wang, Robert G. Landers, Douglas A. Bristow, James A. Drallmeier, Edward C. Kinzel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper demonstrates the potential for qualification through local part property prediction of 304L stainless steel parts manufactured by Selective Laser Melting (SLM). This is accomplished through voxel based processing of SWIR imaging data measured in-situ. Thermal features are extracted from time-series SWIR imaging data recorded from layer-to-layer to generate 3D point cloud reconstructions of parts. The voxel based data is indexed with localized measurements of SLM part properties (light-to-dark microstructural feature ratio, microhardness, μCT data) to demonstrate the correlations. Various features are extracted from the thermal history for comparison of their respective abilities to predict the resulting local part …


Comparison Of Fatigue Performance Between Additively Manufactured And Wrought 304l Stainless Steel Using A Novel Fatigue Test Setup, M. M. Parvez, Y. Chen, Joseph William Newkirk, Frank W. Liou Aug 2019

Comparison Of Fatigue Performance Between Additively Manufactured And Wrought 304l Stainless Steel Using A Novel Fatigue Test Setup, M. M. Parvez, Y. Chen, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In this research, a novel adaptive controlled fatigue testing machine was designed for bending type high cycle fatigue test. A unique dual gauge section Krouse type mini specimen was designed for simply supported transverse bending. Displacement controlled fatigue tests were implemented using an electromechanical actuator. The variation in the control signal and load observed during the test provides unique insights into realizing the deterioration of the specimen due to fatigue. These analyses were utilized to compare the fatigue performance of wrought and additively manufactured 304L stainless steel. The influence of the build direction on fatigue performance was also investigated by …


Application Of Schlieren Technique In Additive Manufacturing: A Review, R. Bharadwaja, Aravind Murugan, Yitao Chen, Frank W. Liou Aug 2019

Application Of Schlieren Technique In Additive Manufacturing: A Review, R. Bharadwaja, Aravind Murugan, Yitao Chen, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing has gained a lot of attention in the past few decades due to its significant advantages in terms of design freedom, lower lead time, and ability to produce complex shapes. One of the pivotal factors affecting the process stability and hence the part quality is the shielding gas flow in additive manufacturing. As extremely beneficial for the process, the shielding gas flow is often set at maximum supply to achieve enough gas cover over the substrate. This causes excessive quantity of shielding gas to be unutilized. Realizing the importance of shielding gas, various studies have been carried out …


Applications Of Supervised Machine Learning Algorithms In Additive Manufacturing: A Review, M. S. Joshi, Aaron Flood, Todd E. Sparks, Frank W. Liou Aug 2019

Applications Of Supervised Machine Learning Algorithms In Additive Manufacturing: A Review, M. S. Joshi, Aaron Flood, Todd E. Sparks, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive Manufacturing (AM) simplifies the fabrication of complex geometries. Its scope has rapidly expanded from the fabrication of pre-production visualization models to the manufacturing of end use parts driving the need for better part quality assurance in the additively manufactured parts. Machine learning (ML) is one of the promising techniques that can be used to achieve this goal. Current research in this field includes the use of supervised and unsupervised ML algorithms for quality control and prediction of mechanical properties of AM parts. This paper explores the applications of supervised learning algorithms - Support Vector Machines and Random Forests. Support …


Simulated Effect Of Laser Beam Quality On The Robustness Of Laser-Based Am System, Aaron Flood, Frank W. Liou Aug 2019

Simulated Effect Of Laser Beam Quality On The Robustness Of Laser-Based Am System, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In many metal AM techniques, a laser is used as the heat source and in some applications, it can be advantageous to work off of the focal plane. When operating outside of focus, the beam quality of the laser can have drastic impacts on the ability to manufacture quality parts. This study investigates the effect of the beam quality and distance from the focal plan on the ability to deposit Ti-64, aluminum, and steel through the simulation of the blown powder process.


Compressive And Bending Performance Of Selectively Laser Melted Alsi10mg Structures, D. Murphy, O. Fashanu, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, H. Misak, D. Klenosky Aug 2019

Compressive And Bending Performance Of Selectively Laser Melted Alsi10mg Structures, D. Murphy, O. Fashanu, Myranda Spratt, Joseph William Newkirk, K. Chandrashekhara, H. Misak, D. Klenosky

Materials Science and Engineering Faculty Research & Creative Works

Selective laser melting (SLM) is a widely used additive manufacturing technique that effectively manufactures complex geometries such as cellular structures. However, challenges such as anisotropy and mechanical property variation are commonly found due to process parameters. In a bid to utilize this method for the commercial production of cellular structures, it is important to understand the behavior of a material under different loading conditions. In this work, the behavior of additively manufactured AlSi10Mg under compression, bending, and tension loads was investigated. Vertical and horizontal build directions are compared for each type of loading. Specimens were manufactured using the reduced build …


Elevated Temperature Mechanical And Microstructural Characterization Of Slm Ss304l, G. R. Hecht, Sriram Praneeth Isanaka, Joseph William Newkirk Aug 2019

Elevated Temperature Mechanical And Microstructural Characterization Of Slm Ss304l, G. R. Hecht, Sriram Praneeth Isanaka, Joseph William Newkirk

Materials Science and Engineering Faculty Research & Creative Works

SLM built SS304L was annealed and water quenched to minimize residual stress and avoid carbide precipitation. Mini-tensile characterization of strength and elongation at temperature conditions up to 800°C, along with observations of the associated microstructural transformations were utilized to understand the changes produced in SLM SS304L. As-built and annealed specimens were found to exhibit decreasing strength and elongation with increasing temperature as expected. Carbide precipitates appeared after short times at high temperatures within both as-built and annealed specimens for all cases, but no brittle intermetallic phase development was observed for any of the temperatures investigated. While the lack of Sigma, …


Dynamic Defect Detection In Additively Manufactured Parts Using Fea Simulation, Kevin Johnson, Aimee Allen, Jason R. Blough, Andrew Barnard, David Labyak, Troy Hartwig, Ben Brown, David Soine, Tristan Cullom, Edward C. Kinzel, Douglas A. Bristow, Robert G. Landers Aug 2019

Dynamic Defect Detection In Additively Manufactured Parts Using Fea Simulation, Kevin Johnson, Aimee Allen, Jason R. Blough, Andrew Barnard, David Labyak, Troy Hartwig, Ben Brown, David Soine, Tristan Cullom, Edward C. Kinzel, Douglas A. Bristow, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The goal of this paper is to evaluate internal defects in additively manufactured (AM) parts using FEA simulation. The resonant frequencies of parts are determined by the stiffness and mass involved in the mode shape at each resonant frequency. Voids in AM parts will change the stiffness and mass therefore shift the resonant frequencies from nominal. This paper will investigate the use of FEA to determine how much a void size, shape, and location will change the resonant frequencies. Along with where the optimal input and response locations are in order to find these frequency changes. The AM part evaluated …


Frequency Domain Measurements Of Melt Pool Recoil Pressure Using Modal Analysis And Prospects For In-Situ Non-Destructive Testing, Tristan Cullom, Nicholas Altese, Douglas A. Bristow, Robert G. Landers, Ben Brown, Troy Hartwig, David Soine, Aimee Allen, Andrew Barnard, Jason Blough, Kevin Johnson, Edward C. Kinzel Aug 2019

Frequency Domain Measurements Of Melt Pool Recoil Pressure Using Modal Analysis And Prospects For In-Situ Non-Destructive Testing, Tristan Cullom, Nicholas Altese, Douglas A. Bristow, Robert G. Landers, Ben Brown, Troy Hartwig, David Soine, Aimee Allen, Andrew Barnard, Jason Blough, Kevin Johnson, Edward C. Kinzel

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Fielding Additively Manufactured (AM) parts requires evaluating both the part’s geometry and material state. This includes geometry that may be optically hidden. Both the geometry and material state affect the vibration response of the parts and modal analysis (identifying natural frequencies) has been shown to be effective for at least simple geometries using ex-situ methods (shaker table and impact hammer excitations). This paper investigates evaluation of the frequency response of metal parts inside the build chamber using the process laser to excite the parts during printing (Renishaw AM250). Vibrations in the part are measured with accelerometers connected to the build …


Joining Of Copper And Stainless Steel 304l Using Direct Metal Deposition, Xinchang Zhang, Yitao Chen, Tan Pan, Wenyuan Cui, Lan Li, Frank W. Liou Aug 2019

Joining Of Copper And Stainless Steel 304l Using Direct Metal Deposition, Xinchang Zhang, Yitao Chen, Tan Pan, Wenyuan Cui, Lan Li, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In the current study, the feasibility of joining pure copper (Cu) and stainless steel 304L (SS304L) through direct metal deposition process was investigated by material characterization. Samples were analyzed in terms of microstructure, elemental distribution, and tensile testing. Direct depositing pure copper on SS304L shows copper was mechanically rather than metallurgical bonded with SS304L due to the poor dissolubility of iron in copper. Iron was diffused into copper with a diluted distance of 1.5 mm and above that, pure copper deposits were obtained. Columnar structure was observed at the copper region near the interface while the columnar grains became finer …


Part Remanufacturing Using Hybrid Manufacturing Processes, Xinchang Zhang, Frank W. Liou Aug 2019

Part Remanufacturing Using Hybrid Manufacturing Processes, Xinchang Zhang, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Many users of high-performance metal parts, such as the aerospace industry, the mold/die casting industry, and heavy machinery consumers, extend the service of these damaged parts by employing remanufacturing technology. Additive manufacturing has unique capabilities, such as low heat input, a small heat-affected zone, free-form fabrication, and a near-net-shape. This paper summarizes the effort and the tested results to achieve an automated remanufacturing process using hybrid additive manufacturing and CNC machining processes. It will enable the robust remanufacturing-on-demand to significantly increase operational availability to reduce sustainment costs, thus will lead to robust and quality remanufacturing that is critical for remanufacturing …


The Effect Of Cell Size And Surface Roughness On The Compressive Properties Of Abs Lattice Structures Fabricated By Fused Deposition Modeling, Leah Mason, Ming-Chuan Leu Aug 2019

The Effect Of Cell Size And Surface Roughness On The Compressive Properties Of Abs Lattice Structures Fabricated By Fused Deposition Modeling, Leah Mason, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Researchers looking to improve the surface roughness of acrylonitrile butadiene styrene (ABS) parts fabricated by fused deposition modeling (FDM) have determined that acetone smoothing not only achieves improved surface roughness but increases compressive strength as well. However, the sensitivity of ABS parts to acetone smoothing has not been explored. In this study we investigated FDM-fabricated ABS lattice structures of various cell sizes subjected to cold acetone vapor smoothing to determine the combined effect of cell size and acetone smoothing on the compressive properties of the lattice structures. The acetone-smoothed specimens performed better than the as-built specimens in both compression modulus …


Fabrication And Characterization Of Alₓcrcufeni₂ High-Entropy Alloys Coatings By Laser Metal Deposition, Wenyuan Cui, Xinchang Zhang, Lan Li, Yitao Chen, Tan Pan, Frank W. Liou Aug 2019

Fabrication And Characterization Of Alₓcrcufeni₂ High-Entropy Alloys Coatings By Laser Metal Deposition, Wenyuan Cui, Xinchang Zhang, Lan Li, Yitao Chen, Tan Pan, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

High-entropy alloys (HEAs) are becoming new hot spots in the metallic materials community, which are defined to contain equiatomic or close-to-equiatomic compositions. HEAs can possess many interesting mechanical properties, and in particular, they have the great potential to be used as coating materials requiring high hardness and wear resistance. In this study, the feasibility of fabrication AlₓCrCuFeNi₂ (x=0,0.75) HEAs was investigated via laser metal deposition from elemental powders. The microstructure, phase structure, and hardness were studied by an optical microscope, scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), electron backscatter diffraction (EBSD) and Vickers hardness tester. The bonding between the …


Cyber-Enabled Product Lifecycle Management: A Multi-Agent Framework, Vishwa V. Kumar, Avimanyu Sahoo, Frank W. Liou Aug 2019

Cyber-Enabled Product Lifecycle Management: A Multi-Agent Framework, Vishwa V. Kumar, Avimanyu Sahoo, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Trouble free use of a product and its associated services for a specified minimum period of time is a major factor to win the customer's trust in the product. Rapid and easy serviceability to maintain its functionalities plays a key role in achieving this goal. However, the sustainability of such a model cannot be promised unless the current health status of the product is monitored and condition-based maintenance is exercised. Internet of Things (IoT), an important connectivity paradigm of recent times, which connects physical objects to the internet for real-time information exchange and execution of physical actions via wired/wireless protocols. …


Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part I, Lan Li, Lei Yan, Wenyuan Cui, Yitao Chen, Tan Pan, Xinchang Zhang, Aaron Flood, Frank W. Liou Aug 2019

Predictive Model For Thermal And Stress Field In Selective Laser Melting Process -- Part I, Lan Li, Lei Yan, Wenyuan Cui, Yitao Chen, Tan Pan, Xinchang Zhang, Aaron Flood, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

During the part forming in laser powder bed fusion process, thermal distortion is one big problem due to the thermal stress which is caused by the high cooling rate and temperature gradient. Therefore, it is important to know the effect of process parameters on thermal and stress evolution in the melt zone. In this paper, a 3D finite element model for Selective Laser Melting (SLM) process based on sequentially coupled thermo-mechanical field analysis was developed for accurately predicting thermal history and surface features, like distortion and residual stress. Temperature dependent material properties for performed material 304L stainless steel are incorporated …