Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Missouri University of Science and Technology

Series

PDF

Discipline
Keyword
Publication

Articles 1 - 30 of 249

Full-Text Articles in Engineering

Neutronic Investigation Of Alternative & Composite Burnable Poisons For The Soluble-Boron-Free And Long Life Civil Marine Small Modular Reactor Cores, Syed B. Alam, Bader Almutairi, Tuhfatur Ridwan, Dinesh Kumar, Cameron S. Goodwin, For Full List Of Authors, See Publisher's Website. Dec 2019

Neutronic Investigation Of Alternative & Composite Burnable Poisons For The Soluble-Boron-Free And Long Life Civil Marine Small Modular Reactor Cores, Syed B. Alam, Bader Almutairi, Tuhfatur Ridwan, Dinesh Kumar, Cameron S. Goodwin, For Full List Of Authors, See Publisher's Website.

Nuclear Engineering and Radiation Science Faculty Research & Creative Works

Concerns about the effects of global warming provide a strong case to consider how best nuclear power could be applied to marine propulsion. Currently, there are persistent efforts worldwide to combat global warming, and that also includes the commercial freight shipping sector. In an effort to decarbonize the marine sector, there are growing interests in replacing the contemporary, traditional propulsion systems with nuclear propulsion systems. The latter system allows freight ships to have longer intervals before refueling; subsequently, lower fuel costs, and minimal carbon emissions. Nonetheless, nuclear propulsion systems have remained largely confined to military vessels. It is highly desirable …


Bubble Pinch-Off In Turbulence, Daniel J. Ruth, Wouter Mostert, Stephane Perrard, Luc Deike Dec 2019

Bubble Pinch-Off In Turbulence, Daniel J. Ruth, Wouter Mostert, Stephane Perrard, Luc Deike

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Although bubble pinch-off is an archetype of a dynamical system evolving toward a singularity, it has always been described in idealized theoretical and experimental conditions. Here, we consider bubble pinch-off in a turbulent flow representative of natural conditions in the presence of strong and random perturbations, combining laboratory experiments, numerical simulations, and theoretical modeling. We show that the turbulence sets the initial conditions for pinch-off, namely the initial bubble shape and flow field, but after the pinch-off starts, the turbulent time at the neck scale becomes much slower than the pinching dynamics: The turbulence freezes. We show that the average …


Diffusion And Uniformity Of Recycled Asphalt In Pavements, Baoshan Huang Dec 2019

Diffusion And Uniformity Of Recycled Asphalt In Pavements, Baoshan Huang

Abbett Distinguished Seminar Series

Asphalt pavements covers over 93 percent of the paved roads in the United States. The use of recycled asphalt into pavement maintenance and construction has been a common practice. However the lack of understanding of the interaction between recycled and virgin asphalt poses a change on the efficient use of recycled asphalt, and often causes pavement premature failures. The present study addressed some fundamental aspects associated with the beneficial use of recycled asphalt into asphalt paving mixtures: 1) how much recycled asphalt can be mobilized into a uniform asphalt coating in the mixture? and 2) will the mobilized old asphalt …


Simulation Training And Route Optimization For Bridge Inspection, Sushil Louis Dec 2019

Simulation Training And Route Optimization For Bridge Inspection, Sushil Louis

INSPIRE Archived Webinars

Since the 1970s, simulation training has developed opera­tional trainers for a variety of complex systems from pilot flight simulations to cultural awareness training simulations. When connected to the real world, such simulation training interfaces can drive real vehicles and systems. We have been building a Simulation Training And Control System (STACS) for autonomous bridge inspection that uses a simulated world to train inspectors to control a heterogeneous group of robots. The objective is that, once trained, inspectors can use the same STACS interface used in training to control multiple real robots simultaneously during a bridge inspection task. We first built …


A Characterization Of Different Alkali Chemical Agents For Alkaline Flooding Enhanced Oil Recovery Operations: An Experimental Investigation, Sherif Fakher, Hesham Abdelaal, Youssef Elgahawy, Abdulmohsin Imqam Dec 2019

A Characterization Of Different Alkali Chemical Agents For Alkaline Flooding Enhanced Oil Recovery Operations: An Experimental Investigation, Sherif Fakher, Hesham Abdelaal, Youssef Elgahawy, Abdulmohsin Imqam

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

Alkaline injection is a chemical enhanced oil recovery method that is used to increase oil recovery by reacting with the crude oil and creating an in situ surfactant. Many chemical agents can be used as an alkali during injection all of which have several advantages and disadvantages. This research focuses on the innate properties of three alkali agents and their ability to alter pH and temperature downhole. Alkali solutions were prepared with five different concentrations including 0.2, 1, 2, 3, and 4 wt%. The impact of varying the alkali concentration, monovalent cations manifested in sodium chloride, and divalent cations manifested …


Hedge Fund Replication Using Strategy Specific Factors, Sujit Subhash, David Lee Enke Dec 2019

Hedge Fund Replication Using Strategy Specific Factors, Sujit Subhash, David Lee Enke

Engineering Management and Systems Engineering Faculty Research & Creative Works

Hedge funds have traditionally served wealthy individuals and institutional investors with the promise of delivering protection of capital and uncorrelated positive returns irrespective of market direction, allowing them to better manage portfolio risk. However, the financial crisis of 2008 has heightened investor sensitivity to the high fees, illiquidity, lack of transparency, and lockup periods typically associated with hedge funds. Hedge fund replication products, or clones, seek to answer these challenges by providing daily liquidity, transparency, and immediate exposure to a desired hedge fund strategy. Nonetheless, although lowering cost and adding simplicity by using a common set of factors, traditional replication …


Predicting The Daily Return Direction Of The Stock Market Using Hybrid Machine Learning Algorithms, X. Zhong, David Lee Enke Dec 2019

Predicting The Daily Return Direction Of The Stock Market Using Hybrid Machine Learning Algorithms, X. Zhong, David Lee Enke

Engineering Management and Systems Engineering Faculty Research & Creative Works

Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields, including stock market investment. However, few studies have focused on forecasting daily stock market returns, especially when using powerful machine learning techniques, such as deep neural networks (DNNs), to perform the analyses. DNNs employ various deep learning algorithms based on the combination of network structure, activation function, and model parameters, with their performance depending on the format of the data representation. This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 …


Better Beware: Comparing Metacognition For Phishing And Legitimate Emails, Casey I. Canfield, Baruch Fischhoff, Alex Davis Dec 2019

Better Beware: Comparing Metacognition For Phishing And Legitimate Emails, Casey I. Canfield, Baruch Fischhoff, Alex Davis

Engineering Management and Systems Engineering Faculty Research & Creative Works

Every electronic message poses some threat of being a phishing attack. If recipients underestimate that threat, they expose themselves, and those connected to them, to identity theft, ransom, malware, or worse. If recipients overestimate that threat, then they incur needless costs, perhaps reducing their willingness and ability to respond over time. In two experiments, we examined the appropriateness of individuals' confidence in their judgments of whether email messages were legitimate or phishing, using calibration and resolution as metacognition metrics. Both experiments found that participants had reasonable calibration but poor resolution, reflecting a weak correlation between their confidence and knowledge. These …


Correction To: Better Beware: Comparing Metacognition For Phishing And Legitimate Emails (Metacognition And Learning, (2019), 14, 3, (343-362), 10.1007/S11409-019-09197-5), Casey I. Canfield, Baruch Fischhoff, Alex Davis Dec 2019

Correction To: Better Beware: Comparing Metacognition For Phishing And Legitimate Emails (Metacognition And Learning, (2019), 14, 3, (343-362), 10.1007/S11409-019-09197-5), Casey I. Canfield, Baruch Fischhoff, Alex Davis

Engineering Management and Systems Engineering Faculty Research & Creative Works

The article "Better beware: comparing metacognition for phishing and legitimate emails", written by Casey Inez Canfield, Baruch Fischhoff and Alex Davis, was originally published electronically on the publisher's internet portal (currently SpringerLink) on 20 July 2019 without open access.


3d Janus Plasmonic Helical Nanoapertures For Polarization-Encrypted Data Storage, Yang Chen, Xiaodong Yang, Jie Gao Dec 2019

3d Janus Plasmonic Helical Nanoapertures For Polarization-Encrypted Data Storage, Yang Chen, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Helical structures have attracted considerable attention due to their inherent optical chirality. Here, we report a unique type of 3D Janus plasmonic helical nanoaperture with direction-controlled polarization sensitivity, which is simply fabricated via the one-step grayscale focused ion beam milling method. Circular dichroism in transmission of as large as 0.72 is experimentally realized in the forward direction due to the spin-dependent mode coupling process inside the helical nanoaperture. However, in the backward direction, the nanoaperture acquires giant linear dichroism in transmission of up to 0.87. By encoding the Janus metasurface with the two nanoaperture enantiomers having specified rotation angles, direction-controlled …


Orbital Angular Momentum Transformation Of Optical Vortex With Aluminum Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao Dec 2019

Orbital Angular Momentum Transformation Of Optical Vortex With Aluminum Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The orbital angular momentum (OAM) transformation of optical vortex is realized upon using aluminum metasurfaces with phase distributions derived from the caustic theory. The generated OAM transformation beam has the well-defined Bessel-like patterns with multiple designed topological charges from -1 to +2.5 including both the integer-order and fractional-order optical vortices along the propagation. The detailed OAM transformation process is observed in terms of the variations of both beam intensity and phase profiles. The dynamic distributions of OAM mode density in the transformation are further analyzed to illustrate the conservation of the total OAM. The demonstration of transforming OAM states arbitrarily …


Spontaneous Emission Rate Enhancement With Aperiodic Thue-Morse Multilayer, Ling Li, Cherian J. Mathai, Shubhra Gangopadhyay, Xiaodong Yang, Jie Gao Dec 2019

Spontaneous Emission Rate Enhancement With Aperiodic Thue-Morse Multilayer, Ling Li, Cherian J. Mathai, Shubhra Gangopadhyay, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The emergence of multilayer metamaterials in the research field of enhancing spontaneous emission rates has recently received extensive attention. Previous research efforts mostly focus on periodic metal-dielectric multilayers in hyperbolic dispersion region; however, the influence of lattice order in subwavelength multilayers on spontaneous emission is rarely studied. Here, we observe the stronger Purcell enhancement of quantum dots coupled to the aperiodic metal-dielectric multilayer with Thue-Morse lattice order from elliptical to hyperbolic dispersion regions, compared to the periodic multilayer with the same metal filling ratio. This work demonstrates the potential of utilizing quasiperiodic metamaterial nanostructures to engineer the local density of …


Energy-Performance Scalability Analysis Of A Novel Quasi-Stochastic Computing Approach, Prashanthi Metku, Ramu Seva, Minsu Choi Dec 2019

Energy-Performance Scalability Analysis Of A Novel Quasi-Stochastic Computing Approach, Prashanthi Metku, Ramu Seva, Minsu Choi

Electrical and Computer Engineering Faculty Research & Creative Works

Stochastic computing (SC) is an emerging low-cost computation paradigm for efficient approximation. It processes data in forms of probabilities and offers excellent progressive accuracy. Since SC's accuracy heavily depends on the stochastic bitstream length, generating acceptable approximate results while minimizing the bitstream length is one of the major challenges in SC, as energy consumption tends to linearly increase with bitstream length. To address this issue, a novel energy-performance scalable approach based on quasi-stochastic number generators is proposed and validated in this work. Compared to conventional approaches, the proposed methodology utilizes a novel algorithm to estimate the computation time based on …


Structured Iterative Hard Thresholding For Categorical And Mixed Data Types, Thy Nguyen, Tayo Obafemi-Ajayi Dec 2019

Structured Iterative Hard Thresholding For Categorical And Mixed Data Types, Thy Nguyen, Tayo Obafemi-Ajayi

Electrical and Computer Engineering Faculty Research & Creative Works

In many applications, data exists in a mixed data type format, i.e. a combination of nominal (categorical) and numerical features. A common practice for working with categorical features is to use an encoding method to transform the discrete values into numeric representation. However, numeric representation often neglects the innate structures in categorical features, potentially degrading the performance of learning algorithms. Utilizing the numeric representation could also limit interpretation of the learned model, such as finding the most discriminative categorical features or filtering irrelevant attributes. In this work, we extend the iterative hard thresholding (IHT) algorithm to quantify the structure of …


Publisher Correction: Pore Elimination Mechanisms During 3d Printing Of Metals (Nature Communications, (2019), 10, 1, (3088), 10.1038/S41467-019-10973-9), S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Mimglei Qu, Luis I. Escano, Xianghui Xiao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen Dec 2019

Publisher Correction: Pore Elimination Mechanisms During 3d Printing Of Metals (Nature Communications, (2019), 10, 1, (3088), 10.1038/S41467-019-10973-9), S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Mimglei Qu, Luis I. Escano, Xianghui Xiao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The original version of this Article contained an error in Fig. 4. The x-axis labels in Fig. 4a, b were incorrectly labelled 'Diameter (mm)', rather than the correct 'Diameter (µm)'. This has been corrected in both the PDF and HTML versions of the Article.


Magnetic Field Induced Ferrofluid Droplet Breakup In A Simple Shear Flow At A Low Reynolds Number, Md Rifat Hassan, Cheng Wang Dec 2019

Magnetic Field Induced Ferrofluid Droplet Breakup In A Simple Shear Flow At A Low Reynolds Number, Md Rifat Hassan, Cheng Wang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The breakup phenomenon of a ferrofluid droplet in a simple shear flow under a uniform magnetic field is numerically investigated in this paper. The numerical simulation, based on the finite element method, uses a level set method to capture the dynamic evolution of the droplet interface between the two phases. Focusing on small Reynolds numbers (i.e., Re ≤ 0.03), systematic numerical simulations are carried out to analyze the effects of magnetic field strength, direction, and viscosity ratio on the breakup phenomenon of the ferrofluid droplet. The results suggest that applying a magnetic field along α = 45° and 90° relative …


Generation Of Polarization Singularities With Geometric Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao Dec 2019

Generation Of Polarization Singularities With Geometric Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The polarization singularities are directly generated by using plasmonic metasurfaces with the geometric phase profiles designed to form the Poincaré beams. Different morphologies of polarization topological structures of lemon, star, monstar, spiral, dipole and quadrupole are created by the superpositions of Laguerre-Gauss modes with different orders under orthogonal circular or linear polarization basis. The polarization ellipse patterns and topological features of the produced optical vector fields are analyzed to reveal the properties of the polarization singularities of C-points and L-lines, and the orbital angular momentum states are also measured. The demonstrated polarization singularities generated from the geometric metasurfaces will promise …


Droplets As Carriers For Flexible Electronic Devices, Mingxing Zhou, Ziyue Wu, Yicong Zhao, Qing Yang, Wei Ling, Ya Li, Hang Xu, Cheng Wang, Xian Huang Dec 2019

Droplets As Carriers For Flexible Electronic Devices, Mingxing Zhou, Ziyue Wu, Yicong Zhao, Qing Yang, Wei Ling, Ya Li, Hang Xu, Cheng Wang, Xian Huang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Coupling soft bodies and dynamic motions with multifunctional flexible electronics is challenging, but is essential in satisfying the urgent and soaring demands of fully soft and comprehensive robotic systems that can perform tasks in spite of rigorous spatial constraints. Here, the mobility and adaptability of liquid droplets with the functionality of flexible electronics, and techniques to use droplets as carriers for flexible devices are combined. The resulting active droplets (ADs) with volumes ranging from 150 to 600 µL can conduct programmable functions, such as sensing, actuation, and energy harvesting defined by the carried flexible devices and move under the excitation …


Design And Sensitivity Analysis Of Ebg Stripline Common-Mode Filters, Marina Y. Koledintseva, Sergiu Radu, Joseph Nuebel Dec 2019

Design And Sensitivity Analysis Of Ebg Stripline Common-Mode Filters, Marina Y. Koledintseva, Sergiu Radu, Joseph Nuebel

Electrical and Computer Engineering Faculty Research & Creative Works

Workflow of electromagnetic bandgap (EBG) common-mode (CM) filter design of edge-coupled differential pairs on a printed circuit board (PCB) and sensitivity of its characteristics to variations of geometrical and material parameters are discussed. A number of simple 20-GHz EBG CM notch filters for differential strip line pairs are designed using full-wave numerical electromagnetic modeling, fabricating, and testing. The cases of one and two strip line differential pairs crossing the EBG patches are considered. The modeled and measured mixed-mode S-parameters are analyzed as functions of geometrical parameters, including size and number of EBG patches, gaps between them, geometry and position of …


Application Of Artificial Neural Networks In The Drilling Processes: Can Equivalent Circulation Density Be Estimated Prior To Drilling?, Husam Hasan Alkinani, Abo Taleb Al-Hameedi, Shari Dunn-Norman, David Lian Dec 2019

Application Of Artificial Neural Networks In The Drilling Processes: Can Equivalent Circulation Density Be Estimated Prior To Drilling?, Husam Hasan Alkinani, Abo Taleb Al-Hameedi, Shari Dunn-Norman, David Lian

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

As the drilling environment became more challenging nowadays, managing equivalent circulating density (ECD) is a key factor to minimize non-productive time (NPT) due to many drilling obstacles such as stuck pipe, formation fracturing, and lost circulation. The goal of this work was to predict ECD prior to drilling by using artificial neural network (ANN). Once ECD is recognized, the crucial drilling variables impact ECD can be modified to control ECD within the acceptable ranges. Data from over 2000 wells collected worldwide were used in this study to create an ANN to predict ECD prior to drilling. Into training, validation, and …


Behavior Of Hollow-Core Composite Bridge Columns Having Slender Inner Steel Tubes, Mohanad M. Abdulazeez, Mohamed Elgawady Dec 2019

Behavior Of Hollow-Core Composite Bridge Columns Having Slender Inner Steel Tubes, Mohanad M. Abdulazeez, Mohamed Elgawady

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This paper experimentally investigates the seismic behavior of three large-scale hollow-core fiber-reinforced polymer-concrete-steel (HC-FCS) columns. An HC-FCS column consisted of a concrete shell sandwiched between an outer glass fiber-reinforced polymer (GFRP) tube and an inner steel tube. Both tubes provided continuous confinement for the concrete shell along with the height of the column. The columns had two different steel tube diameter-to-thickness (Ds/ts) ratios of 85, and 254. Each steel tube was embedded into the footing, with an embedded length of 1.25-1.6 times its diameter, while the GFRP tube was not embedded into the footing. Two columns were tested as as-built …


Pore Elimination Mechanisms During 3d Printing Of Metals, S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Lianyi Chen, For Full List Of Authors, See Publisher's Website. Dec 2019

Pore Elimination Mechanisms During 3d Printing Of Metals, S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Lianyi Chen, For Full List Of Authors, See Publisher's Website.

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with complex geometries without the design constraints of traditional manufacturing routes. However, the parts printed by LPBF normally contain many more pores than those made by conventional methods, which severely deteriorates their properties. Here, by combining in-situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the LPBF process. We find that the high thermocapillary force, induced by the high temperature gradient in the laser interaction region, can rapidly eliminate pores from the …


Review On Rheological Characterization Of Bio-Oils/Bio- Binders And Their Applicability In The Flexible Pavement Industry, Ahmed Hemida, Magdy Abdelrahman Dec 2019

Review On Rheological Characterization Of Bio-Oils/Bio- Binders And Their Applicability In The Flexible Pavement Industry, Ahmed Hemida, Magdy Abdelrahman

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

This paper mainly presents a qualitative review on to what extent the bio-oil has the potential to replace asphalt binder for a sustainable, flexible pavement industry. The current research comprises reviews on the rheological characterization of pure bio-oils and bio-oil modified binders (bio-binders) investigated in the literature. The literature showed that several sources of bio-oils have the potential to contribute to the flexible pavement industry. This research mainly discusses the high-temperature properties, especially viscosity for the construction process (mixing and compaction) and viscoelasticity for the elevated temperature of in-service roads. This review paper encourages orientation towards these kinds of renewable …


Multifunctional Lightweight Aggregate Containing Phase Change Material And Water For Damage Mitigation Of Concrete, Wenyu Liao, Aditya Kumar, Kamal Khayat, Hongyan Ma Dec 2019

Multifunctional Lightweight Aggregate Containing Phase Change Material And Water For Damage Mitigation Of Concrete, Wenyu Liao, Aditya Kumar, Kamal Khayat, Hongyan Ma

Materials Science and Engineering Faculty Research & Creative Works

This paper presents an innovative concept of multifunctional lightweight aggregate, which is produced by loading phase change material (PCM) into the interior of lightweight sand (LWS) and sealing the surface pores using water. The PCM loaded in the LWS functionalizes it as a temperature management agent in concrete, and the water in surface pores enables internal curing. It has been found that the particle shape and pore structure of crushed expanded shale LWS makes it an ideal carrier for PCM, loading sufficient PCM and maintaining better (compared to natural sand) mechanical interlocking. When coupled with the internal curing effect, the …


Second-Harmonic Optical Vortex Conversion From Ws₂ Monolayer, Arindam Dasgupta, Jie Gao, Xiaodong Yang Dec 2019

Second-Harmonic Optical Vortex Conversion From Ws₂ Monolayer, Arindam Dasgupta, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS2 monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS2 monolayer precisely determines the output circular …


Spatial Variation Of Vector Vortex Beams With Plasmonic Metasurfaces, Yuchao Zhang, Jie Gao, Xiaodong Yang Dec 2019

Spatial Variation Of Vector Vortex Beams With Plasmonic Metasurfaces, Yuchao Zhang, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The spatial variation of vector vortex beams with arbitrary polarization states and orbital angular momentum (OAM) values along the beam propagation is demonstrated by using plasmonic metasurfaces with the initial geometric phase profiles determined from the caustic theory. The vector vortex beam is produced by the superposition of deflected right- and left-handed circularly polarized component vortices with different helical phase charges, which are simultaneously generated off-axially by the single metasurface. Besides, the detailed evolution processes of intensity profile, polarization distribution and OAM value along the beam propagation distance is analyzed. The demonstrated arbitrary space-variant vector vortex beam will pave the …


Analysis And Introduction Of Effective Permeability With Additional Air-Gaps On Wireless Power Transfer Coils For Electric Vehicle Based On Sae J2954 Recommended Practice, Dongwook Kim, Hongseok Kim, Anfeng Huang, Qiusen He, Hanyu Zhang, Seungyoung Ahn, Yuyu Zhu, Jun Fan Dec 2019

Analysis And Introduction Of Effective Permeability With Additional Air-Gaps On Wireless Power Transfer Coils For Electric Vehicle Based On Sae J2954 Recommended Practice, Dongwook Kim, Hongseok Kim, Anfeng Huang, Qiusen He, Hanyu Zhang, Seungyoung Ahn, Yuyu Zhu, Jun Fan

Electrical and Computer Engineering Faculty Research & Creative Works

The wireless power transfer (WPT) method for electric vehicles (EVs) is becoming more popular, and to ensure the interoperability of WPT systems, the Society of Automotive Engineers (SAE) established the J2954 recommended practice (RP). It includes powering frequency, electrical parameters, specifications, testing procedures, and other contents for EV WPT. Specifically, it describes the ranges of self-inductances of the transmitting coil, the receiving coil, and coupling coefficient (k), as well as the impedance matching values of the WPT system. Following the electrical parameters listed in SAE J2954 RP is crucial to ensure the EV wireless charging system is interoperable. This paper …


Polyball: A New Adsorbent For The Efficient Removal Of Endotoxin From Biopharmaceuticals, Sidharth Razdan, Jee-Ching Wang, Sutapa Barua Dec 2019

Polyball: A New Adsorbent For The Efficient Removal Of Endotoxin From Biopharmaceuticals, Sidharth Razdan, Jee-Ching Wang, Sutapa Barua

Chemical and Biochemical Engineering Faculty Research & Creative Works

The presence of endotoxin, also known as lipopolysaccharides (LPS), as a side product appears to be a major drawback for the production of certain biomolecules that are essential for research, pharmaceutical, and industrial applications. In the biotechnology industry, gram-negative bacteria (e.g., Escherichia coli ) are widely used to produce recombinant products such as proteins, plasmid DNAs and vaccines. These products are contaminated with LPS, which may cause side effects when administered to animals or humans. Purification of LPS often suffers from product loss. For this reason, special attention must be paid when purifying proteins aiming a product as free as …


Nonlinear Loss Model In Absorptive-Type Ferrite Frequency-Selective Limiters, Anatoliy O. Boryssenko, Scott M. Gillette, Marina Y. Koledintseva Dec 2019

Nonlinear Loss Model In Absorptive-Type Ferrite Frequency-Selective Limiters, Anatoliy O. Boryssenko, Scott M. Gillette, Marina Y. Koledintseva

Electrical and Computer Engineering Faculty Research & Creative Works

Absorptive-type ferrite-based frequency-selective limiters (FSLs) utilize nonlinear (NL) phenomena in magnetized ferrites to provide real-time analog signal processing of RF/microwave electromagnetic (EM) signals. There are no commercially available modeling tools that simulate these interactions, and the development and optimization of FSLs are largely done experimentally. FSL modeling and design is complicated by NL, multiscale, and Multiphysics nature of operation. In this article, an NL loss model in a ferrite is proposed and implemented in an efficient numerical algorithm. The equivalent linear magnetic loss tangent is represented in a closed form. A full-wave numerical EM model with high-fidelity meshing is set …


Grain Refinement In Iron-Based Materials, Simon Naumovich Lekakh, Von Richards, Ronald J. O'Malley, Jun Ge Nov 2019

Grain Refinement In Iron-Based Materials, Simon Naumovich Lekakh, Von Richards, Ronald J. O'Malley, Jun Ge

Materials Science and Engineering Faculty Research & Creative Works

A process for manufacturing an iron-based alloy comprising forming targeted fine oxide and/or carbide dispersoids in a melt, and sequentially precipitating transition-metal nitrides on the dispersoids for heterogeneous nucleation of equiaxed grains. An iron-based cast alloy having a highly equiaxed fine grain structure.