Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Synthesis And Design Of Metals Sulfide/Carbon Composite-Fibers Anodes For Lithium Ion Batteries, Jorge Lopez Dec 2018

Synthesis And Design Of Metals Sulfide/Carbon Composite-Fibers Anodes For Lithium Ion Batteries, Jorge Lopez

Theses and Dissertations

In this study, Forcespinning is used to produce Titanium sulfide (TiS2)/carbon composite fibers for use as lithium-ion battery anodes. The high surface area to volume ratio of the composite fibers can have a high impact on the ionic and electronic conductivity of the active materials leading to improved electrochemical performance of the battery. TiS2 nanoparticles were chosen as the active materials to produce Metal-Li-alloys/C composite fibers due to their high theoretical capacity and low volume change during charge/discharge cycles. The use of a 2-D layered structure of TiS2 nanoparticles in the carbon fiber matrix can greatly accommodate more Li-ions between …


Research Progresses In Improvement For Low Temperature Performance Of Lithium-Ion Batteries, Yue-Ru Gu, Wei-Min Zhao, Chang-Hu Su, Chuan-Jun Luo, Zhong-Ru Zhang, Xu-Jin Xue, Yong Yang Oct 2018

Research Progresses In Improvement For Low Temperature Performance Of Lithium-Ion Batteries, Yue-Ru Gu, Wei-Min Zhao, Chang-Hu Su, Chuan-Jun Luo, Zhong-Ru Zhang, Xu-Jin Xue, Yong Yang

Journal of Electrochemistry

Lithium-ion batteries (LIBs) have become a new research hotspot due to their high energy density and long service life. However, the temperature characteristics, especially the poor performance at low temperatures, have seriously limited their wider applications. In this report, the research progresses in the low temperature performance of LIBs are reviewed. The main existing limitations of LIBs at low temperatures were systematically analyzed, and followed by discussion on the recent improvements in low temperature performances by developing novel cathode, electrolyte, and anode materials. The developments for improving the low temperature performance of LIBs are prospected. The three most important factors …


Co3(Hcoo)6@Rgo As A Promising Anode For Lithium Ion Batteries, Heng Jiang, Jing-Min Fan, Ming-Sen Zheng, Quan-Feng Dong Jun 2018

Co3(Hcoo)6@Rgo As A Promising Anode For Lithium Ion Batteries, Heng Jiang, Jing-Min Fan, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

Metal–organic framework(MOF) is a kind of novel electrode materials for lithium ion batteries. Here, a composite material Co3(HCOO)6@rGO was synthesized for the first time by in situ loading of Co3(HCOO)6 on rGO (reduced oxide graphene) through a solution chemistry method. As an anode material for lithium ion batteries, it exhibited an excellent cycle stability as well as a large reversible capacity of 926 mAh·g-1 at a current density of 500 mA·g-1 after 100 cycles within the voltage range of 0.02 ~ 3.0 V vs. Li/Li+ with a good rate capability. …


Nanostructured Materials Derived From Metal-Organic Frameworks For Energy And Environmental Applications, Zhiqiang Xie Apr 2018

Nanostructured Materials Derived From Metal-Organic Frameworks For Energy And Environmental Applications, Zhiqiang Xie

LSU Doctoral Dissertations

Nowadays, energy and environmental issues have become the top priority among a series of global issues. Fossil fuels as the dominant source are depleted fast and usually lead to some environmental problems. Heavy metal pollution has posed a severe threat to environment and public health. Metal-organic frameworks (MOFs), as a very promising category of porous materials, have attracted more and more interest in research communities due to their extremely high surface areas, diverse nanostructures and unique properties. To meet the ever-increasing energy demand and tackle the heavy metal pollution in water, MOFs can function as ideal templates to prepare various …