Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares Dec 2016

Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares

Open Access Dissertations

In this work, the ability to use high frequency mechanical excitation to generate significant heating within plastic bonded explosives, as well as single energetic particles embedded within a viscoelastic binder, is studied. In this work, the fundamental mechanisms associated with the conversion of high-frequency mechanical excitation to heat as applied to these composite energetic systems are thoroughly investigated.

High-frequency contact excitation has been used to generate a significant amount of heat within samples of PBX 9501 and representative inert mock materials. Surface temperature rises on the order of 10 °C were observed at certain frequencies over a range from 50 …


Development Of An Analytical Model For Beams With Two Dimples In Opposing Directions, Mofareh H. Ghazwani Dec 2016

Development Of An Analytical Model For Beams With Two Dimples In Opposing Directions, Mofareh H. Ghazwani

Masters Theses

Structures such as beams and steel plates can produce potentially high levels of unwanted vibrations and noises in the environment. A method of improving the vibration and acoustic characteristics of beams based on introducing dimples on its surfaces will be presented in this study. This method focuses on creating two dimples in the same and opposite direction on beam’s surface where the effect of dimples on the change in beam’s natural frequencies is the problems of interest.

A boundary value model (BVM) is developed for a beam with two dimples and subjected to various boundary conditions using Hamilton’s Variational Principle. …


Vibration Monitoring Via Nano-Composite Piezoelectric Foam Bushings, David T. Fullwood, Evan T. Bird, A Jake Merrell, Brady K. Anderson, Cory N. Newton, Parker G. Rosquist, Anton E. Bowden, Matthew K. Seeley Oct 2016

Vibration Monitoring Via Nano-Composite Piezoelectric Foam Bushings, David T. Fullwood, Evan T. Bird, A Jake Merrell, Brady K. Anderson, Cory N. Newton, Parker G. Rosquist, Anton E. Bowden, Matthew K. Seeley

Faculty Publications

Most mechanical systems produce vibrations as an inherent side effect of operation. Though some vibrations are acceptable in operation, others can cause damage or signal a machine’s imminent failure. These vibrations would optimally be monitored in real-time, without human supervision to prevent failure and excessive wear in machinery. This paper explores a new alternative to currently-used machine-monitoring equipment, namely a piezoelectric foam sensor system. These sensors are made of a silicone-based foam embedded with nano- and micro-scale conductive particles. Upon impact, they emit an electric response that is directly correlated with impact energy, with no electrical power input. In the …


Effect Of Low Velocity Impact On The Vibrational Behavior Of A Composite Wing, Richard M. De Luna Mar 2016

Effect Of Low Velocity Impact On The Vibrational Behavior Of A Composite Wing, Richard M. De Luna

Master's Theses

Impact strength is one of the most important structural properties for a designer to consider, but it is often the most difficult to quantify or measure. A major concern for composite structures in the field is the effect of foreign objects striking composites because the damage is often undetectable by visual inspection. The objective for this study was to determine the effectiveness of using dynamic testing to identify the existence of damage in a small scale composite wing design. Four different impact locations were tested with three specimens per location for a total of 12 wings manufactured. The different impact …


Nonlinear Vibration Energy Harvesting Based On Variable Double Well Potential Function, Wei Yang, Shahrzad Towfighian Jan 2016

Nonlinear Vibration Energy Harvesting Based On Variable Double Well Potential Function, Wei Yang, Shahrzad Towfighian

Mechanical Engineering Faculty Scholarship

Converting ambient mechanical energy to electricity, vibration energy harvesting, enables powering of the low-power remote sensors. Nonlinear energy harvesters have the advantage of a wider frequency spectrum compared to linear resonators making them more efficient in scavenging the broadband frequency of ambient vibrations. To increase the output power of the nonlinear resonators, we propose an energy harvester composed of a cantilever piezoelectric beam carrying a movable magnet facing a fixed magnet at a distance. The movable magnet on the beam is attached to a spring at the base of the beam. The spring-magnet system on the cantilever beam creates the …


Vibration Effect On Magnetization And Critical Current Density Of Superconductors, Igor A. Golovchanskiy, Alexey V. Pan, Jonathan George, Frederick Wells, Sergey Fedoseev, Anatoly B. Rosenfeld Jan 2016

Vibration Effect On Magnetization And Critical Current Density Of Superconductors, Igor A. Golovchanskiy, Alexey V. Pan, Jonathan George, Frederick Wells, Sergey Fedoseev, Anatoly B. Rosenfeld

Australian Institute for Innovative Materials - Papers

In this work the effect of vibrations on critical current density ( Jc) of superconductors has been studied. The vibrations are shown to affect Jc of all types of superconductors during their measurements, employing a vibrating sample magnetometer (VSM). Increasing vibration frequency ( f ) and/or amplitude (A) leads to progressive reduction of Jc as a function of magnetic field (Ba). The effect of vibrations is substantially stronger in thin films. It leads to development of unexpected kinks on Jc (Ba) curves. Analysis of magnetization loops and relaxation of magnetization in YBCO films revealed that the vibration effect can be …