Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Microstructure

Discipline
Institution
Publication
Publication Type

Articles 31 - 46 of 46

Full-Text Articles in Engineering

Coercivity Enhancement And Gamma Phase Avoidance Of Alnico Alloys, Li Zhang May 2016

Coercivity Enhancement And Gamma Phase Avoidance Of Alnico Alloys, Li Zhang

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

The promotion of social progress requires greater levels of energy efficiency, quality and productivity. However, these developments usually come at the cost of the environment. Green technologies such as electric vehicles, wind turbine and solar panels are ironically overshadowed by supply limitations and high prices of rare earth elements. Therefore, it is important to find alternative materials to replace those that contain critical elements. Alnico alloys show high magnetization, high Curie temperature (800°C) and good corrosion resistance, making it one of the best candidates to replace neodymium-based magnets used in electric vehicles.

In this thesis, methods controlling shape anisotropy and …


Field Tests Of Cement Fly-Ash Steel-Slag Pile Composite Foundation, Bing Zhang, Shuai Cui Apr 2016

Field Tests Of Cement Fly-Ash Steel-Slag Pile Composite Foundation, Bing Zhang, Shuai Cui

Department of Civil, Environmental, and Geospatial Engineering Publications

Steel slag is one of the main waste materials in the steelmaking process. As a result, a tremendous amount of steel slag is produced and deposited into storing yards every year. Recycling of the abandoned steel slag is of great environmental and economic value. This study investigates the usage of steel-slag concrete with fly ash as a kind of composite foundation pile material, which can be applied to multi-pile composition foundations for ground improvement involving different pile types. The micromorphology of the concrete, which uses steel slag as aggregate, is analyzed using scanning electron microscopy (SEM). The bearing characteristics of …


Secondary Electron Emission From Plasma Processed Accelerating Cavity Grade Niobium, Miloš Bašović Apr 2016

Secondary Electron Emission From Plasma Processed Accelerating Cavity Grade Niobium, Miloš Bašović

Mechanical & Aerospace Engineering Theses & Dissertations

Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier.

Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher …


Features Of Grain Growth And Grain Boundary Formation Under Microwave And Spark Plasma Sintering Conditions, Ostap Zgalat, Andrey Ragulya Mar 2016

Features Of Grain Growth And Grain Boundary Formation Under Microwave And Spark Plasma Sintering Conditions, Ostap Zgalat, Andrey Ragulya

Electric Field Assisted Sintering and Related Phenomena Far From Equilibrium

The feedback properties of particulate nanomaterials versus their structure parameters (grain size, pore size), were found much more sensitive than that in conventional materials [1-3]. Among them field assisted sintering techniques including SPS and microwave sintering (MWS) were intensively developed [4-9]. The effect of inhibited grains growth for nanomaterials was established for Field Assisted Sintering Technology [4,5,8,9].

The FAST or Spark Plasma Sintering (SPS) is a rapid rate consolidation technology where effect of electromagnetic field enhanced by external pressure. The studies of FAST densification for nano-TiN shows the possibility to substantially inhibit the grain growth and fabricate materials with grains …


The Effects Of Thermal Procedure On Transformation Temperature, Crystal Structure And Microstructure Of Cu-Al-Co Shape Memory Alloy, Y. Aydoğdu, M. Kök, F. Dağdelen, A. Aydoğdu, Ali S. Turabi, Haluk E. Karaca Jan 2016

The Effects Of Thermal Procedure On Transformation Temperature, Crystal Structure And Microstructure Of Cu-Al-Co Shape Memory Alloy, Y. Aydoğdu, M. Kök, F. Dağdelen, A. Aydoğdu, Ali S. Turabi, Haluk E. Karaca

Mechanical Engineering Faculty Publications

The purpose of this study is to investigate the effects of different thermal procedures of the Cu-Al-Co shape memory alloy on its crystal structure, transformation temperature and microstructure. The alloys were subjected to a heat treatment and then cooling was applied at four different conditions. After the thermal process, XRD, DSC, optical microscopy and micro-hardness measurements were carried out. The experimental studies showed that crystal structure, microstructure and transformation temperature of Cu-Al-Co alloy were changed from the cooling conditions.


Cryogenic Processing Of Al 7050-T7451 Alloy For Improved Surface Integrity, Bo Huang Jan 2016

Cryogenic Processing Of Al 7050-T7451 Alloy For Improved Surface Integrity, Bo Huang

Theses and Dissertations--Mechanical Engineering

Al 7050-T7451 alloy with good combinations of strength, stress corrosion cracking resistance and toughness, is used broadly in the aerospace/aviation industry for fatigue-critical airframe structural components. However, it is also considered as a highly anisotropic alloy as the crack growth behavior along the short transverse direction is very different from the one in the long transverse direction, due to the inhomogeneous microstructure with the elongated grains distributed in the work material used in the sheet/plate applications. Further processes on these materials are needed to improve its mechanical and material properties and broaden its applications.

The material with ultra-fine or nano …


Effect Of Deformation On Microstructure And Mechanical Properties Of Dual Phase Steel Produced Via Strip Casting Simulation, Zhiping Xiong, Andrii Kostryzhev, Nicole Stanford, Elena V. Pereloma Jan 2016

Effect Of Deformation On Microstructure And Mechanical Properties Of Dual Phase Steel Produced Via Strip Casting Simulation, Zhiping Xiong, Andrii Kostryzhev, Nicole Stanford, Elena V. Pereloma

Faculty of Engineering and Information Sciences - Papers: Part A

The strip casting is a recently appeared technology with a potential to significantly reduce energy consumption in steel production, compared to hot rolling and cold rolling. However, the quantitative dependences of the steel microstructure and mechanical properties on strip casting parameters are unknown and require investigation. In the present work we studied the effects of strain and interrupted cooling temperature on microstructure and mechanical properties in conventional dual phase steel (0.08C-0.81Si-1.47Mn-0.03Al wt%). The strip casting process was simulated using a Gleeble 3500 thermo-mechanical simulator. The steel microstructures were studied using optical, scanning and transmission electron microscopy. Mechanical properties were measured …


Microstructure And Micro-Texture Evolution During The Dynamic Recrystallisation Of A Ni-30fe-Nb-C Model Alloy, Parvez Mannan, Ahmed A. Saleh, Azdiar A. Gazder, Gilberto Casillas, Elena V. Pereloma Jan 2016

Microstructure And Micro-Texture Evolution During The Dynamic Recrystallisation Of A Ni-30fe-Nb-C Model Alloy, Parvez Mannan, Ahmed A. Saleh, Azdiar A. Gazder, Gilberto Casillas, Elena V. Pereloma

Faculty of Engineering and Information Sciences - Papers: Part A

The evolution of microstructure and micro-texture during discontinuous dynamic recrystallisation of an austenitic Ni-30Fe-Nb-C model alloy subjected to interrupted plane strain compression at strains (ε) of 0.23, 0.35, 0.68, 0.85 and 1.2 was investigated using electron backscattering diffraction and transmission electron microscopy. Throughout the strain range, the majority of dynamic recrystallisation events comprised nucleation in necklace-like arrangements located at and along grain boundaries via bulging. At ε ≥ 0.68, discrete nucleation events were also observed within grain interiors. Grain growth during dynamic recrystallisation is characteristic of strain induced boundary migration. The initial texture comprised Cube-RD ({013}〈100〉), Cube-ND ({001}〈310〉) and Cube …


Regional Mechanical Properties And Microstructure Of Ovine Heart Chambers, Shahnaz Javani Jan 2016

Regional Mechanical Properties And Microstructure Of Ovine Heart Chambers, Shahnaz Javani

Electronic Theses and Dissertations

Mechanical properties of cardiac tissue play an important role in the normal heart function. As a baseline for understanding of physiology and pathophysiology of the heart, and for development and validation of new therapies, it is crucial to first understand the mechanical behavior of the normal heart tissue. Although heart chambers have the same embryonic origin, differences in the development of mechanical properties are expected to manifest over time during the adulthood period. Therefore, the goal of this study was to determine the passive mechanical properties of all heart chambers through a paired comparison study in an ovine model. Ovine …


Texture And Microstructure Of Ipvd Copper Manganese Seed In 1 Μm & 70 Nm Wide Damascene Trenches, Robert Stuart Brown Jan 2016

Texture And Microstructure Of Ipvd Copper Manganese Seed In 1 Μm & 70 Nm Wide Damascene Trenches, Robert Stuart Brown

Legacy Theses & Dissertations (2009 - 2024)

This thesis describes the grain texture and microstructure of Ionized Physical Vapor Deposition (iPVD) Copper Manganese seed in 1 µm and 70 nm wide damascene trenches. Using Transmission Electron Microscopy (TEM) imaging and diffraction pattern analysis, the grain size and general orientation of the grains were determined. It was found that the 1 µm wide trenches contained larger grains and more texture than that of the 70 nm wide trenches. While this thesis builds upon previous work by Brendan O’Brien in the Dunn group, one significantly different finding will be presented regarding the structure on the sidewall of the trenches. …


The Heat Treatment Analysis Of E110 Case Hardening Steel, Majid Tolouei Rad, Eric Lichter Jan 2016

The Heat Treatment Analysis Of E110 Case Hardening Steel, Majid Tolouei Rad, Eric Lichter

Research outputs 2014 to 2021

This paper investigates mechanical and microstructural behaviour of E110 case hardening steel when subjected to different heat treatment processes includingquenching, normalizing and tempering. After heat treatment samples were subjected to mechanical and metallographic analysisand the properties obtained from applying different processes were analysed. The heat treatment process had certain effects on the resultant properties andmicrostructures obtained for E110 steel which are described in details. Quenching produced a martensitic microstructure characterized by significant increase in material’s hardness and a significant decreased in its impact energy. Annealed specimens produced a coarse pearlitic microstructure with minimal variation in hardness and impact energy. For …


Influence Of Nb On The Β → Α″ Martensitic Phase Transformation And Properties Of The Newly Designed Ti-Fe-Nb Alloys, Shima Ehtemam-Haghighi, Yujing Liu, Guanghui Cao, Lai-Chang Zhang Jan 2016

Influence Of Nb On The Β → Α″ Martensitic Phase Transformation And Properties Of The Newly Designed Ti-Fe-Nb Alloys, Shima Ehtemam-Haghighi, Yujing Liu, Guanghui Cao, Lai-Chang Zhang

Research outputs 2014 to 2021

A series of Ti-7Fe-xNb (x = 0, 1, 4, 6, 9, 11 wt.%) alloys was designed and cast to investigate the β → α″ martensitic phase transformation, β phase stability, the resulting microstructure and mechanical properties. Phase analysis revealed that only Ti-7Fe-11Nb alloy shows a single body-centred cubic β phase microstructure while the others are comprised of β and orthorhombic α″ phases. Moreover, Nb addition up to 11 wt.% enhances the stability and volume fraction of β phase in the microstructure, hence reducing the propensity of the alloy system to form α″ phase during quenching. Compressive yield strength and hardness …


Processing Of Al-12si-Tnm Composites By Selective Laser Melting And Evaluation Of Compressive And Wear Properties, Konda Prashanth, Sergio Scudino, Anil Chaubey, Lukas Löber, Pei Wang, Hooyar Attar, Frank Schimansky, Florian Pyczak, Jürgen Eckert Jan 2016

Processing Of Al-12si-Tnm Composites By Selective Laser Melting And Evaluation Of Compressive And Wear Properties, Konda Prashanth, Sergio Scudino, Anil Chaubey, Lukas Löber, Pei Wang, Hooyar Attar, Frank Schimansky, Florian Pyczak, Jürgen Eckert

Research outputs 2014 to 2021

Al-12Si (80 vol%)-Ti52.4Al42.2Nb4.4Mo0.9B0.06 (at.%) (TNM) composites were successfully produced by the selective laser melting (SLM). Detailed structural and microstructural analysis shows the formation of the Al6MoTi intermetallic phase due to the reaction of the TNM reinforcement with the Al-12Si matrix during SLM. Compression tests reveal that the composites exhibit significantly improved properties (∼140 and ∼160 MPa higher yield and ultimate compressive strengths, respectively) compared with the Al-12Si matrix. However, the samples break at ∼6% total strain under compression, thus showing a reduced plasticity of the composites. Sliding wear tests were carried out for both the Al-12Si matrix and the Al-12Si-TNM …


Microstructure And Mechanical Properties Of Strip Cast Trip Steel Subjected To Thermo-Mechanical Simulation, Zhiping Xiong, Andrii Kostryzhev, Liang Chen, Elena V. Pereloma Jan 2016

Microstructure And Mechanical Properties Of Strip Cast Trip Steel Subjected To Thermo-Mechanical Simulation, Zhiping Xiong, Andrii Kostryzhev, Liang Chen, Elena V. Pereloma

Faculty of Engineering and Information Sciences - Papers: Part A

Instead of hot rolling and cold rolling followed by annealing, strip casting is a more economic and environmentally friendly way to produce transformation-induced plasticity (TRIP) steels. According to industrial practice of strip casting, rapid cooling in this work was achieved using a dip tester, and a Gleeble 3500 thermo-mechanical simulator was used to carry out the processing route. A typical microstructure of TRIP steels, which included ~0.55 fraction of polygonal ferrite with bainite, retained austenite and martensite, was obtained. The effects of deformation (0.41 reduction) above non-recrystallisation temperature, isothermal bainite transformation temperature and the size of second phase region on …


An Adapted Approach To Process Mapping Across Alloy Systems And Additive Manufacturing Processes, Luke Charles Sheridan Jan 2016

An Adapted Approach To Process Mapping Across Alloy Systems And Additive Manufacturing Processes, Luke Charles Sheridan

Browse all Theses and Dissertations

The continually growing market for metal components fabricated using additive manufacturing (AM) processes has called for a greater understanding of the effects of process variables on the melt pool geometry and microstructure in manufactured components for various alloy systems. Process Mapping is a general approach that traces the influence of process parameters to thermal behavior and feature development during AM processing. Previous work has focused mainly on Ti-6Al-4V (Ti64), but this work uses novel mathematical derivations and adapted process mapping methodologies to construct new geometric, thermal, and microstructural process maps for Ti64 and two nickel superalloy material systems. This work …


Elucidating The Role Of Microstructure, Texture, And Microtexture On The Dwell Fatigue Response Of Ti-6al-4v, Alec Mitchell Blankenship Jan 2016

Elucidating The Role Of Microstructure, Texture, And Microtexture On The Dwell Fatigue Response Of Ti-6al-4v, Alec Mitchell Blankenship

Browse all Theses and Dissertations

Ambient temperature dwell sensitivity is known to be deleterious to the fatigue response of near-alpha titanium alloys. Dwell fatigue refers to the presence of a sustained hold at peak stress as opposed to the continuous variation of normal cyclic fatigue loading. This reduction in failure life-times from dwell loading is attributed to early crack nucleation and faster crack propagation. The degradation is the result of plastic anisotropy on the microstructural scale along with tendency of titanium alloys to creep at low temperatures at stresses well below the 0.2% offset yield strength. Despite being the most widely used titanium alloy, Ti-6Al-4V …