Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Deterministic Neutron Transport And Multiphysics Experimental Safety Analyses At The High Flux Isotope Reactor, Christopher James Hurt Dec 2016

Deterministic Neutron Transport And Multiphysics Experimental Safety Analyses At The High Flux Isotope Reactor, Christopher James Hurt

Doctoral Dissertations

The computational ability to accurately predict the conditions in an experiment under irradiation is a valuable tool in the operation of a research reactor whose scientific mission includes isotope production, materials irradiation, and neutron activation analysis. Understanding of different governing physics is required to ascertain satisfactory conditions within the experiment: the neutron transport behavior throughout the reactor and the coupled behavior of heat transfer, structural mechanics and fluid flow. Computational methods and tools were developed for robust numerical analysis of experiment behavior at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR), including fully-coupled thermo-mechanics in three plutonium-238 …


Thermal Transport In Lithium Ion Batteries: An Experimental Investigation Of Interfaces And Granular Materials, Aalok Jaisheela Uday Gaitonde Dec 2016

Thermal Transport In Lithium Ion Batteries: An Experimental Investigation Of Interfaces And Granular Materials, Aalok Jaisheela Uday Gaitonde

Open Access Theses

Increasing usage and recent accidents due to lithium-ion (Li-ion) batteries exploding or catching on fire has inspired research on the characterization and thermal management of these batteries. In cylindrical 18650 cells, heat generated during the battery's charge/discharge cycle is poorly dissipated to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work presents a technique to measure the thermal conduction across the metallic case-plastic separator interface, which ultimately limits heat transfer out of the jelly roll.

The polymeric separator …


Thermo-Mechanical System Identification Of A Shape Memory Alloy Actuated Mechanism, Cody Alexander Wright Oct 2016

Thermo-Mechanical System Identification Of A Shape Memory Alloy Actuated Mechanism, Cody Alexander Wright

Mechanical & Aerospace Engineering Theses & Dissertations

Shape memory alloy (SMA) actuators paired in an antagonistic arrangement can be used to produce mechanisms that replicate human biomechanics. To investigate this proposal, the biomechanical articulation of the elbow by means of the biceps brachii muscle is compared with that of a SMA actuated arm. This is accomplished by parametric analysis of a crank-slider kinematic mechanism actuated, first, with an experimentally characterized SMA wire and then an idealized musculotendon actuator based on actuation properties of muscles published in the literature. Next, equations of motion for the system dynamics of the SMA actuated mechanism are derived and phase portrait analysis …


Effect Of Aggregation And Particle Size On The Thermal Conductivity Of Nickel-Epoxy Nanocomposites, Jacob M. Faulkner, Xiangyu Li, Xiulin Ruan Dr. Aug 2016

Effect Of Aggregation And Particle Size On The Thermal Conductivity Of Nickel-Epoxy Nanocomposites, Jacob M. Faulkner, Xiangyu Li, Xiulin Ruan Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microprocessor advancements have been stunted in recent years by inadequate means of heat dissipation as power continues to grow and size continues to shrink. One way to increase thermal conductivity while maintaining electrical insulation is to add metal nanoparticles to a polymer matrix. This cheap material has become a popular thermal interface for this reason. However, optimization of the interface is dependent upon a number of factors including particle size, shape, orientation, and aggregation. Various theoretical models and numerical approximations have been developed to find the effective thermal conductivity of such nanocomposites, but none has been able to fully incorporate …


Atomistic And Mesoscopic Simulations Of Heat Transfer Across Heterogeneous Material Interfaces, Sridhar Sadasivam Aug 2016

Atomistic And Mesoscopic Simulations Of Heat Transfer Across Heterogeneous Material Interfaces, Sridhar Sadasivam

Open Access Dissertations

The study of heat transfer and the associated thermal interface resistance at heterogeneous material interfaces is over 70 years old since the first measurements of thermal interface resistance by Kapitza in 1941. However, recent developments in experimental metrology techniques that enable spectrally-resolved phonon transport measurements at the nanoscale along with the development of high-fidelity simulation methods have provided a renewed interest in the fundamental physics of heat transfer across interfaces. Miniaturized electronic devices and nanostructured materials for energy applications are among technologies that would benefit from a fundamental understanding of interfacial thermal transport. This dissertation focuses on the study of …


Modeling Atypical Building Use With Commercially Available Building Simulation Software, Sarah E. Schanck Jul 2016

Modeling Atypical Building Use With Commercially Available Building Simulation Software, Sarah E. Schanck

Theses and Dissertations

National Guard armories are audited to provide recommendations for future energy reduction measures. The annual energy consumption of a New Jersey National Guard Armories cannot be modeled directly with commercially available building simulation software, due to discrepancies between the modeling capabilities of the software and the reality of the armory. A building simulation software, eQUEST, was chosen for use in this project. Discrepancies between eQUEST inputs and reality were identified and correction factors developed to minimize the effect of each discrepancy on predicted energy consumption, with the end goal of accuracy between predicted and actual energy consumption. In addition, an …


Fluid Analysis In Solar Heat Pipes, Ben Krumholz, Michael Agavo, William Dundon Jun 2016

Fluid Analysis In Solar Heat Pipes, Ben Krumholz, Michael Agavo, William Dundon

Mechanical Engineering

Evacuated tube solar collectors are efficient systems that use heat pipes to facilitate heat transfer. They use incoming solar radiation to heat water. Professor Mason Medizade tasked the team with choosing a component of the system to research and test its influence on system performance. The team investigated the working fluid that runs through the heat pipes. Distilled water, acetone, and ethanol at a range of fill volumes form 1 mL to 11 mL were tested. The team's goal was to find a volume for each fluid to maximize performance of the system. Performance was defined as average temperature rise …


A Model For Complex Heat And Mass Transport Involving Porous Media With Related Applications, Furqan A. Khan Apr 2016

A Model For Complex Heat And Mass Transport Involving Porous Media With Related Applications, Furqan A. Khan

Electronic Thesis and Dissertation Repository

Heat and mass transfer involving porous media is prevalent in, for example, air-conditioning, drying, food storage, and chemical processing. Such applications require non-equilibrium heat and mass (or moisture) transfer modeling inside porous media in conjugate fluid/porous/solid framework. Moreover, modeling of turbulence and turbulent heat and mass transfer becomes essential for many applications. A comprehensive literature review shows a scarcity of models having such capabilities. In this respect, the objectives of the present thesis are to: i) develop a formulation that simulates non-equilibrium heat and mass transfer in conjugate fluid/porous/solid framework, ii) demonstrate the capabilities of the developed formulation by simulating …


Characterization Of Pool Boiling Heat Transfer From Porous-Coating-Enhanced Surfaces, Suchismita Sarangi Apr 2016

Characterization Of Pool Boiling Heat Transfer From Porous-Coating-Enhanced Surfaces, Suchismita Sarangi

Open Access Dissertations

Development of techniques for enhancement and optimization of thermal management technologies has been a highly active area of research in recent decades in response to the rapid emergence of compact, high-power electronic systems. Immersion cooling by boiling is one of the preferred methods for high power density applications, due to its passive nature and high heat transfer coefficients obtained. Pool boiling heat transfer has been extensively studied in recent decades to understand the inherent mechanisms yielding the high heat transfer rates, as well as to further enhance the heat transfer by simple modifications or additions to existing approaches. This thesis …


Dynamic Control Of Radiative Surface Properties With Origami-Inspired Design, Rydge B. Mulford, Matthew R. Jones, Brian D. Iverson Mar 2016

Dynamic Control Of Radiative Surface Properties With Origami-Inspired Design, Rydge B. Mulford, Matthew R. Jones, Brian D. Iverson

Faculty Publications

Thermal management systems for space equipment commonly use static solutions that do not adapt to environmental changes. Dynamic control of radiative surface properties is one way to respond to environmental changes and to increase the capabilities of spacecraft thermal management systems. This paper documents an investigation of the extent to which origami-inspired surfaces may be used to control the apparent absorptivity of a reflective material. Models relating the apparent absorptivity of a radiation shield to time-dependent surface temperatures are presented. Results show that the apparent absorptivity increases with increasing fold density and indicate that origami-inspired designs may be used to …


The Design, Fabrication, And Validation Of A Film Cooled Rotating Turbine Cascade With An Actively Cooled Shroud In A Closed Loop Wind Tunnel, Christopher Michael Drewes Jan 2016

The Design, Fabrication, And Validation Of A Film Cooled Rotating Turbine Cascade With An Actively Cooled Shroud In A Closed Loop Wind Tunnel, Christopher Michael Drewes

LSU Master's Theses

To test shroud and blade cooling effectiveness, a closed loop, heated wind tunnel housing a film cooled rotating turbine cascade with prescribed blade and vane geometry surrounded by a fully cooled shroud with a leading edge gap were designed and assembled on Louisiana State University’s campus. Heat transfer coefficients and film cooling effectiveness results were computed using a 1-D semi-infinite solid conduction analysis of material temperatures obtained with liquid crystal thermography. Proper analysis required a step change in air temperature; so a bypass loop provided mainstream air heating while maintaining the shroud and blades at ambient temperature. Also, analysis required …