Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Experimental And Numerical Study Of Dysphagia, Yash G. Potdar Dec 2016

Experimental And Numerical Study Of Dysphagia, Yash G. Potdar

Masters Theses

Dysphagia, meaning difficulty in swallowing, is a symptom of disease that occurs in young children and elderly people. It occurs particularly due to two reasons, weak neural network and/or deformities in oral section/s. The Helen DeVos Children’s Hospital’s Intensive Feeding Program takes care of children suffering from Dysphagia. In order to make the swallowing process easier and in some cases safer, thickener is added to the liquids. Depending on the requirement of thickness, the amount of thickener is varied. Although the directions to prepare the mixtures are given by the thickener product company, the required thickness is not achieved when …


Reduced Order Fluid-Structure Interaction Models For Thin Shells With Non-Zero Gaussian Curvatures To Understand The Response Of Aneurysms To Flow, Gary Han Chang Nov 2016

Reduced Order Fluid-Structure Interaction Models For Thin Shells With Non-Zero Gaussian Curvatures To Understand The Response Of Aneurysms To Flow, Gary Han Chang

Doctoral Dissertations

In this thesis, a reduced-order model is constructed to study the physiological flow and wall shear stress conditions for aneurysms. The method of local proper orthogonal decomposition (POD) is used to construct the reduced-order modes using a series of CFD results, which are subsequently improved using a QR-factorization technique to satisfy the various boundary conditions in physiological flow problems. This method can effectively construct a computationally efficient physiological model, which allows us to examine the fluid velocities and wall shear stress distributions over a range of different physiological flow parameters. Aneurysms are the dilation, bulging, or ballooning-out of part of …


Eulerian Cfd Modeling Of Multiphase Internal Injector Flow And External Sprays, Eli T. Baldwin Nov 2016

Eulerian Cfd Modeling Of Multiphase Internal Injector Flow And External Sprays, Eli T. Baldwin

Doctoral Dissertations

The improvement of combustion systems which use sprays to atomize liquid fuel requires an understanding of that atomization process. Although the secondary break up mechanisms for the far-field of an atomizing spray have been thoroughly studied and well understood for some time, understanding the internal nozzle flow and primary atomization on which the far-field spray depends has proven to be more of a challenge. Flow through fuel injector nozzles can be highly complex and heavily influenced by factors such as turbulence, needle motion, nozzle imperfections, nozzle asymmetry, and phase change. All of this occurs within metallic injectors, making experimental characterization …


Experimental, Theoretical And Computational Modeling Of Flow Boiling, Flow Condensation And Evaporating Falling Films, Chirag Rajan Kharangate Aug 2016

Experimental, Theoretical And Computational Modeling Of Flow Boiling, Flow Condensation And Evaporating Falling Films, Chirag Rajan Kharangate

Open Access Dissertations

The transition from single-phase to two-phase thermal systems in future space vehicles demands a thorough understanding of phase change methods in reduced gravity, including microgravity. In this study, phase change methods like flow boiling, flow condensation and evaporative falling-films are investigated experimentally, theoretically and computationally.

The experimental part of the study consists of an investigation of the influence of inlet subcooling and two-phase inlet on flow boiling heat transfer and critical heat flux in a horizontal 2.5-mm wide by 5-mm high rectangular channel in different orientations with respect to Earth gravity using FC-72 as working fluid. High-speed video imaging is …


Computational Fluid Dynamic Analysis Of Microbubble Drag Reduction Systems At High Reynolds Number, John D. Goolcharan Jul 2016

Computational Fluid Dynamic Analysis Of Microbubble Drag Reduction Systems At High Reynolds Number, John D. Goolcharan

FIU Electronic Theses and Dissertations

Microbubble drag reduction (MBDR) is an effective method to improve the efficiency of fluid systems. MBDR is a field that has been extensively studied in the past, and experimental values of up to 80% to 90% drag reduction have been obtained. The effectiveness and simplicity of MBDR makes it a viable method for real world applications, particularly in naval applications where it can reduce the drag between the surface of ships and the surrounding water. A two dimensional single phase model was created in ANSYS Fluent to effectively model the behavior of bubble laden flow over a flat plate. This …


Comparison Of Airfoil Precomputational Analysis Methods For Optimization Of Wind Turbine Blades, Ryan Barrett, Andrew Ning Jul 2016

Comparison Of Airfoil Precomputational Analysis Methods For Optimization Of Wind Turbine Blades, Ryan Barrett, Andrew Ning

Faculty Publications

The objective of this research was to develop and compare various airfoil precomputational parameterization and analysis techniques for aerostructural optimization of wind turbine blades. The airfoils along the blade were added as optimization design variables through pre-computational parameterization methods using thickness-to-chord ratios and blended airfoil family factors. The airfoils' aerodynamic performance was analyzed with three methods of increasing fidelity: a panel method (XFOIL), Navier-Stokes based computational fluid dynamics (RANS CFD), and wind tunnel data. The optimizations minimized mass over annual energy production (m/AEP) and thereby approximated the minimization of cost of energy. The results were compared to the NREL 5-MW …


Experimental And Computational Study Of Gas Bubble Removal In A Microfluidic System Using Nanofibrous Membranes, Hamed Gholami Derami, Ravindra Vundavilli, Jeff Darabi Jun 2016

Experimental And Computational Study Of Gas Bubble Removal In A Microfluidic System Using Nanofibrous Membranes, Hamed Gholami Derami, Ravindra Vundavilli, Jeff Darabi

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents a simple and efficient method for removing gas bubbles from a microfluidic system. This bubble removal system uses a T-junction configuration to generate gas bubbles within a water-filled microchannel. The generated bubbles are then transported to a bubble removal region and vented through a hydrophobic nanofibrous membrane. Four different hydrophobic Polytetrafluorethylene (PTFE) membranes with different pore sizes ranging from 0.45 to 3 μm are tested to study the effect of membrane structure on the system performance. The fluidic channel width is 500 μm and channel height ranges from 100 to 300 μm. Additionally, a 3D computational fluid …


Implementations Of Fourier Methods In Cfd To Analyze Distortion Transfer And Generation Through A Transonic Fan, Marshall Warren Peterson Jun 2016

Implementations Of Fourier Methods In Cfd To Analyze Distortion Transfer And Generation Through A Transonic Fan, Marshall Warren Peterson

Theses and Dissertations

Inlet flow distortion is a non-uniform total pressure, total temperature, or swirl (flow angularity) condition at an aircraft engine inlet. Inlet distortion is a critical consideration in modern fan and compressor design. This is especially true as the industry continues to increase the efficiency and operating range of air breathing gas turbine engines. The focus of this paper is to evaluate the Computational Fluid Dynamics (CFD) Harmonic Balance (HB) solver in STAR-CCM+ as a reduced order method for capturing inlet distortion as well as the associated distortion transfer and generation. New methods for quantitatively describing and analyzing distortion transfer and …


Development Of A Three-Dimensional High-Order Strand-Grids Approach, Oisin Tong May 2016

Development Of A Three-Dimensional High-Order Strand-Grids Approach, Oisin Tong

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The strand-Cartesian grid approach is a unique method of generating and computing fluid dynamic simulations. The strand-Cartesian approach provides highly desirable qualities of fully-automatic grid generation and high accuracy. This work focuses on development of a high-accuracy methodology (high-order scheme) on strand grids for two and three dimensions.

In this work, the high-order scheme is extended to high-Reynolds number computations in both two and three dimensions with the Spalart-Allmaras turbulence model and the Menter SST turbulence model. In addition, a simple limiter is explored to allow the high-order scheme to accurately predict discontinuous flows.

Extensive verification and validation is conducted …


Numerical And Experimental Study Of Liquid Breakup Process In Solid Rocket Motor Nozzle, Yi-Hsin Yen May 2016

Numerical And Experimental Study Of Liquid Breakup Process In Solid Rocket Motor Nozzle, Yi-Hsin Yen

Theses and Dissertations

Rocket propulsion is an important travel method for space exploration and national defense, rockets needs to be able to withstand wide range of operation environment and also stable and precise enough to carry sophisticated payload into orbit, those engineering requirement makes rocket becomes one of the state of the art industry. The rocket family have been classified into two major group of liquid and solid rocket based on the fuel phase of liquid or solid state. The solid rocket has the advantages of simple working mechanism, less maintenance and preparing procedure and higher storage safety, those characters of solid rocket …


Computational Fluid Dynamic Modeling Of Natural Convection In Vertically Heated Rods, Mahesh Surendran May 2016

Computational Fluid Dynamic Modeling Of Natural Convection In Vertically Heated Rods, Mahesh Surendran

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Natural convection is a phenomenon that occurs in a wide range of applications such as cooling towers, air conditioners, and power plants. Natural convection may be used in decay heat removal systems such as spent fuel casks, where the higher reliability inherent of natural convection is more desirable than forced convection. Passive systems, such as natural convection, may provide better safety, and hence have received much attention recently. Cooling of spent fuel rods is conventionally done using water as the coolant. However, it involves contaminating the water with radiation from the fuel rods. Contamination becomes dangerous and difficult for humans …


Modified Numerical-Analytical Analysis On Scpps, Nima Fathi, Seyed Sobhan Aleyasin, Peter Vorobieff Mar 2016

Modified Numerical-Analytical Analysis On Scpps, Nima Fathi, Seyed Sobhan Aleyasin, Peter Vorobieff

Nima Fathi

In this study an appropriate expression to estimate the output power of solar chimney power plant systems (SCPPS) was considered. Recently several mathematical models of SCPPS were derived, studied for a variety of boundary conditions, and compared against CFD calculations. An important concern for modeling SCPPS is the accuracy of the derived pressure drop and output power equation. To elucidate the matter, axisymmetric CFD analysis was performed to model the solar chimney power plant and calculate the output power for different available solar radiation. Both analytical and numerical results were compared against the available experimental data from the historical Manzanares …


Project Oasis: Optimizing Aquaponic Systems To Improve Sustainability, Siddharth Nigam, Paige Balcom Jan 2016

Project Oasis: Optimizing Aquaponic Systems To Improve Sustainability, Siddharth Nigam, Paige Balcom

Honors Theses and Capstones

Started in Fall 2015, Project OASIS (Optimizing Aquaponic Systems to Improve Sustainability) is an interdisciplinary capstone project with the goal of designing a sustainable and affordable small-scale aquaponic system for use in developing nations to tackle the problems of malnutrition and food insecurity. Aquaponics is a symbiotic relationship between fish and vegetables growing together in a recirculating system. The project’s goals were to minimize energy consumption and construction costs while using universally available materials. The computational fluid dynamics (CFD) software OpenFOAM was used to create transient and steady-state models of fish tanks to visualize velocity profiles, streamlines, and particle movement. …


Design And Analysis Of An Axisymmetric Aerospike Supersonic Micro-Nozzle For A Refrigerant-Based Cold-Gas Propulsion System For Small Satellites, Abdalla Ali Bani Jan 2016

Design And Analysis Of An Axisymmetric Aerospike Supersonic Micro-Nozzle For A Refrigerant-Based Cold-Gas Propulsion System For Small Satellites, Abdalla Ali Bani

Masters Theses

"The cold-gas propulsion system being developed by M-SAT requires improvements to its original nozzle design. This study documents the research, design, and analysis of a supersonic plug nozzle concept that could be integrated to the refrigerant-based cold-gas propulsion system to possibly improve its performance. As documented in this thesis, CFD analysis showed that the outlined nozzle design method resulted in a feasible nozzle concept that has the ability to out-perform a conventional nozzle of the same area ratio. The flow-fields and thrust of the aerospike nozzle, for the full and truncated nozzles, were investigated. The purpose of this study is …


Analysis Of Road Vehicle Aerodynamics With Computational Fluid Dynamics, Christian Armando Mata Jan 2016

Analysis Of Road Vehicle Aerodynamics With Computational Fluid Dynamics, Christian Armando Mata

Open Access Theses & Dissertations

A road vehicles aerodynamics can be one of the most influential aspects of its performance. With the increased importance on fuel efficiency in recent years, new road vehicles are being developed smaller in size, with smaller displacement engines, as well as with improved aerodynamics. The aerodynamics of a vehicle can have a significant effect on its fuel efficiency, as well as other important aspects of the vehicles performance such as the top speed, acceleration, and handling. A study focusing on analyzing aerodynamic effects due to vehicle geometries such as wheels covered by the vehicles body in comparison to open wheels …


Inlet Distortion Effects On The Unsteady Aerodynamics Of A Transonic Fan Stage, Daniel Oliver Reilly Jan 2016

Inlet Distortion Effects On The Unsteady Aerodynamics Of A Transonic Fan Stage, Daniel Oliver Reilly

Browse all Theses and Dissertations

A computational study was conducted to understand the influence of aircraft inlet distortion flow on the unsteady aerodynamic loading of a gas turbine fan stage. A single stage, transonic fan design with no inlet guide vanes was modeled with a commercial, computational fluid dynamics solver, STAR-CCM+, using the harmonic balance technique. The baseline inlet boundary condition applied to the model is consistent with that of a homeomorphic variant of the M2129 S-duct, and exhibited stagnation pressure distortion and a swirl pattern. The baseline inlet flow was decomposed and parameterized into a set of inlet boundary conditions which were individually applied …