Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Selective Resistive Sintering: A Novel Additive Manufacturing Process, Austin Bryan Van Horn Dec 2016

Selective Resistive Sintering: A Novel Additive Manufacturing Process, Austin Bryan Van Horn

Graduate Theses and Dissertations

Selective laser sintering (SLS) is one of the most popular 3D printing methods that uses a laser to pattern energy and selectively sinter powder particles to build 3D geometries. However, this printing method is plagued by slow printing speeds, high power consumption, difficulty to scale, and high overhead expense. In this research, a new 3D printing method is proposed to overcome these limitations of SLS. Instead of using a laser to pattern energy, this new method, termed selective resistive sintering (SRS), uses an array of microheaters to pattern heat for selectively sintering materials. Using microheaters offers significant power savings, significantly …


The Risks Of Revolution: Ethical Dilemmas In 3d Printing From A Us Perspective, Erica L. Neely Oct 2016

The Risks Of Revolution: Ethical Dilemmas In 3d Printing From A Us Perspective, Erica L. Neely

Philosophy and Religion Faculty Scholarship

Additive manufacturing has spread widely over the past decade, especially with the availability of home 3D printers. In the future, many items may be manufactured at home, which raises two ethical issues. First, there are questions of safety. Our current safety regulations depend on centralized manufacturing assumptions they will be difficult to enforce on this new model of manufacturing. Using current US law as an example, I argue that consumers are not capable of fully assessing all relevant risks and thus continue to require protection any regulation will likely apply to plans, however, not physical objects. Second, there are intellectual …


Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas Aug 2016

Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density is introduced in this paper. In this process, an aqueous paste of ceramic particles with a very low binder content (< 1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Several sample parts for various applications were produced using this process and their properties were obtained. The results indicate that the proposed method enables fabrication of large, dense ceramic parts with complex geometries.


A Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas Aug 2016

A Novel Extrusion-Based Additive Manufacturing Process For Ceramic Parts, Amir Ghazanfari, Wenbin Li, Ming-Chuan Leu, Greg Hilmas

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density is introduced in this paper. In this process, an aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Several sample parts for various applications were produced using this process and their properties were obtained. The results indicate that the proposed method enables fabrication of large, dense ceramic parts with complex geometries.


Fiber Length Attrition In Additive Manufacturing, Michael Chapiro Jun 2016

Fiber Length Attrition In Additive Manufacturing, Michael Chapiro

Materials Engineering

Chopped carbon fibers are used as reinforcements in thermoplastics, but the viscous shear forces that arise in melt-processing reduces the fiber length well below its critical length resulting in only moderate strength and stiffness gains compared to the neat resin. This research project aimed to experimentally determine the effect of the melt–flow portion of a single-screw- extrusion process on carbon fiber length attrition in isolation from the immediately preceding screw–plastication step that is responsible for most of the heat needed for melting. Carbon fibers with an initial length of 2 mm were stirred into 5,000 centipoise and 10,000 centipoise silicone …


Multiple Apple Box Lift 1/10th Scale Model, Kyle J. Burlingame Jan 2016

Multiple Apple Box Lift 1/10th Scale Model, Kyle J. Burlingame

All Undergraduate Projects

Title and Author: 1/10th Scale Multiple Apple Box Lift by Kyle Burlingame (Engineering Technologies, Safety, and Construction) Abstract/Artist statement: A 1/10th scale Multiple Apple Box Lift was designed and built as a proof of concept for a full scale device. The Multiple Apple Box Lift was designed to meet a customer’s requirements and to be presented at SOURCE. This device lifts the top half of the stacked apple boxes on a pallet in order to allow access to the boxes in the middle of the stack. The device can be manually operated by two people while in-between narrow rows of …


Creating Multi-Functional G-Code For Multi-Process Additive Manufacturing, Efrain Aguilera Jr Jan 2016

Creating Multi-Functional G-Code For Multi-Process Additive Manufacturing, Efrain Aguilera Jr

Open Access Theses & Dissertations

Additive manufacturing (AM) started over thirty years ago and with it a manufacturing revolution that moves industrial production into the personal home. With recent interest shifting into multi-functional parts fabricated through AM technologies, unified systems are being developed. Merging different manufacturing technologies into one single machine is a challenge but undergoing research has shown promise in the development of multi-functional systems. Concurrent work is being done in the software, automation, and hardware aspect of multi-functional systems. An effort to use industry compatible Computer Aided Design (CAD) software to design multi-functional parts including circuits, micro-machining, and foil embedding then exporting and …


Feasibility Of Attaining Fully Equiaxed Microstructure Through Process Variable Control For Additive Manufacturing Of Ti-6al-4v, Sarah Louise Kuntz Jan 2016

Feasibility Of Attaining Fully Equiaxed Microstructure Through Process Variable Control For Additive Manufacturing Of Ti-6al-4v, Sarah Louise Kuntz

Browse all Theses and Dissertations

One of the greatest challenges in additive manufacturing is fabricating titanium structures with consistent and desirable microstructure. To date, fully columnar deposits have been achieved through direct control of process variables. However, the introduction of external factors appears necessary to achieve fully equiaxed grain morphology using existing commercial processes. This work introduces and employs an analytic model to relate process variables to solidification thermal conditions and expected beta grain morphology at the surface of and at the deepest point in the melt pool. The latter is required in order to ensure the deposited microstructure is maintained even after the deposition …