Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Application Of The Aeroacoustic Analogy To A Shrouded, Subsonic, Radial Fan., Bryan Buccieri Dec 2015

Application Of The Aeroacoustic Analogy To A Shrouded, Subsonic, Radial Fan., Bryan Buccieri

Electronic Theses and Dissertations

A study was conducted to investigate the predictive capability of computational aeroacoustics with respect to a shrouded, subsonic, radial fan. A three dimensional unsteady fluid dynamics simulation was conducted to produce aerodynamic data used as the acoustic source for an aeroacoustics simulation. Two acoustic models were developed: one modeling the forces on the rotating fan blades as a set of rotating dipoles located at the center of mass of each fan blade and one modeling the forces on the stationary fan shroud as a field of distributed stationary dipoles. Predicted acoustic response was compared to experimental data. The blade source …


A Computational Study On Extension Of Non-Contact Modulation Calorimetry, Xiao Ye Aug 2015

A Computational Study On Extension Of Non-Contact Modulation Calorimetry, Xiao Ye

Doctoral Dissertations

ABSTRACT A COMPUTATIONAL STUDY ON EXTENSION OF NON-CONTACT MODULATION CALORIMETRY May 2015 XIAO YE B.S., SOUTHEAST UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS, AMHERST Ph. D., UNIVERSITY OF MASSACHUSETTS, AMHERST Directed by: Professor Robert W. Hyers Accurate thermophysical properties of high temperature metallic liquids are important for both industrial applications and scientific research. For the former, as predictive numerical simulations play an increasingly important role in pivotal industries, such as casting, welding and sintering, the lack of precise thermophysical properties, especially at high temperatures, hamper their further applications. On the other hand, from the stand point of basic metals physics, being able …


Optimization Of Blalock-Taussig Shunt And Anastomotic Geometry For Vascular Access Fistula Using A Genetic Algorithm, Guangyu Bao Aug 2015

Optimization Of Blalock-Taussig Shunt And Anastomotic Geometry For Vascular Access Fistula Using A Genetic Algorithm, Guangyu Bao

McKelvey School of Engineering Theses & Dissertations

Blalock-Taussig (BT) shunts are used for defects that affect the flow of blood from the right ventricle, through the pulmonary artery, and to the lungs. Arteriovenous (AV) fistula is one type of vascular access which is a surgically created vein used to remove and return blood during hemodialysis. Plastic grafts used in the above two reconstructions may result in areas of non-physiologic flow in the grafts leading to risk of stenosis (blocked area) and thrombosis, which is the single major cause for access morbidity. The focus of this thesis is to study BT shunts and anastomoses models using Computational Fluid …


Numerical Solver For Multiphase Flows, Victor C B Sousa, Carlo Scalo Aug 2015

Numerical Solver For Multiphase Flows, Victor C B Sousa, Carlo Scalo

The Summer Undergraduate Research Fellowship (SURF) Symposium

The technological development of micro-scale electronic devices is bounded by the challenge of dissipating their heat output. Latent heat absorbed by a fluid during phase transition offers exceptional cooling capabilities while allowing for the design of compact heat exchangers. The understanding of heat transport dynamics in the context of multiphase flow physics is hampered by the limited access to detailed flow features offered by experimental measurements. Computational Fluid Dynamics (CFD) can overcome such difficulties by providing a complete description of the three-dimensional instantaneous flow field. Unfortunately, the majority of the numerical investigations in this field at Purdue are carried out …


Computational Fluid Dynamics Applied To The Analysis Of Blood Flow Through Central Aortic To Pulmonary Artery Shunts, Carey Celestin Jr May 2015

Computational Fluid Dynamics Applied To The Analysis Of Blood Flow Through Central Aortic To Pulmonary Artery Shunts, Carey Celestin Jr

University of New Orleans Theses and Dissertations

This research utilizes CFD to analyze blood flow through pathways representative of central shunts, commonly used as part of the Fontan procedure to treat cyanotic heart disease. In the first part of this research, a parametric study of steady, Newtonian blood flow through parabolic pathways was performed to demonstrate the effect that flow pathway curvature has on wall shear stress distribution and flow energy losses. In the second part, blood flow through two shunts obtained via biplane angiograms is simulated. Pressure boundary conditions were obtained via catheterization. Results showed that wall shear stresses were of sufficient magnitude to initiate platelet …


Experimental Validation Data For Cfd Of Steady And Transient Mixed Convection On A Vertical Flat Plate, Blake W. Lance May 2015

Experimental Validation Data For Cfd Of Steady And Transient Mixed Convection On A Vertical Flat Plate, Blake W. Lance

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In this computer age, simulations are becoming common in science and engineering. One category of simulation, Computational Fluid Dynamics (CFD), begins with physical equations but adds approximations and calibrations in order to complete solutions. Translating these equations into computer languages may cause unintended errors. If simulation results are to be used for decision making, their accuracy needs to be assessed. This accuracy assessment is the theory behind the field of Verification & Validation.

Verification involves confirming the translation of physical equations to computer language was per- formed correctly. It also features methods to detect many types of code errors. Validation …


An Investigation Of Off-Design Operation In High Suction Performance Inducers, Ryan Collins Cluff May 2015

An Investigation Of Off-Design Operation In High Suction Performance Inducers, Ryan Collins Cluff

Theses and Dissertations

Three-dimensional two-phase unsteady CFD simulations were run on three and four-blade inducers for the purpose of analyzing differences in cavitation stability at design and off-design flow rates. At design flow rates, there were very small differences between the breakdown curves for the three and four-bladed inducers. However, at lower cavitation numbers, the three-bladed inducer exhibited up to three times the rotor forces than the four-bladed inducer. When moving to off-design flow rates, both inducers experienced multiple modes of cavitation instabilities including rotating cavitation, alternate-blade cavitation, and cavitation surge. The four-bladed inducer began experiencing the formation of these modes of instability …


Concurrent Engineering Through Parallelization Of The Design-Analysis Process, Eric Joseph Wardell May 2015

Concurrent Engineering Through Parallelization Of The Design-Analysis Process, Eric Joseph Wardell

Theses and Dissertations

The disconnect between the way CAD and analysis applications handle model geometry has long been a hindrance to engineering design. Current industry practices often utilize outdated forms of geometry transfer between these different engineering software applications such as neutral file formats and direct translations. Not only to these current practices slow the engineering design process but they also hinder the integration of design and analysis programs.This thesis proposes a new, multi-user, integrated design-analysis architecture which allows auxiliary functions such as analysis and computer-aided manufacturing to be better connected with the computer-aided design. It is hypothesized that this new architecture will …


A Combination Of Computational Fluid Dynamics (Cfd) And Adaptive Neuro-Fuzzy System (Anfis) For Prediction Of The Bubble Column Hydrodynamics Apr 2015

A Combination Of Computational Fluid Dynamics (Cfd) And Adaptive Neuro-Fuzzy System (Anfis) For Prediction Of The Bubble Column Hydrodynamics

Faculty of Engineering University of Malaya

This paper shows a combination of computational fluid dynamics (CFD) and adaptive neuro-fuzzy inference system (ANFIS) to propose a new viewpoint for multiphase flow modeling, including the accuracy of soft computing techniques in the prediction of a three dimensional (3D) bubble column reactor. Since there are some difficulties (i.e., high computational time in numerical methods and expensive equipment in experimental techniques) in predicting bubble column reactors, particularly at different column locations and various operation conditions, soft computing methods can be developed as a favorable replacement for conventional measurement and prediction techniques. This study employs CFD beside the ANFIS method to …


Performance Evaluation Of Natural Ventilation Devices To Improve Thermal Comfort Of A Computer Lab Of University Building Using Cfd As A Tool, Innovative Research Publications Irp India, Dipesh Kumar, Abhishek Jatav Mar 2015

Performance Evaluation Of Natural Ventilation Devices To Improve Thermal Comfort Of A Computer Lab Of University Building Using Cfd As A Tool, Innovative Research Publications Irp India, Dipesh Kumar, Abhishek Jatav

Innovative Research Publications IRP India

Air circulation study is most important part for any building; so that engineers can optimize thermal comfort for buildings. A computer lab located in university building of Jaipur city is used in this study. Main aim of this study is to optimize computer lab for two types of conditions, first is only internal fans are in operational condition and second condition is effect of room window opening and closing. Thermal comfort parameters are used for analysis. Model equations are also generated in this steady using advanced D.O.E. (design of experiment) technique. Computational fluid dynamic (CFD) studies were carried out by …


Specialized Inter-Particle Interaction Lbm For Patterned Superhydrophobic Surfaces, Amal Saeed Yagub Jan 2015

Specialized Inter-Particle Interaction Lbm For Patterned Superhydrophobic Surfaces, Amal Saeed Yagub

Wayne State University Dissertations

SPECIALIZED INTER-PARTICLE INTERACTION LBM FOR PATTERNED SUPERHYDROPHOBIC SURFACES

by

AMAL S. YAGUB

ABSTRACT:

Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able …


Analytical And Numerical Validation Of Nozzle Spray Measurement Data Obtained From A Newly Developed Production System, Iddrisu Seidu Jan 2015

Analytical And Numerical Validation Of Nozzle Spray Measurement Data Obtained From A Newly Developed Production System, Iddrisu Seidu

ETD Archive

A newly developed production test stand for measuring the spray angle of a pressure swirl atomizer was constructed and used to measure a product line of these pressure swirl atomizers -- the macrospray atomizer. This new test stand, utilizing constant temperature hot wire anemometers, captures the spray angle data based on the voltage drop the hot wire probes see as they traverse the spray cone of the atomizer and as fluid droplets impinge upon the wire. Datasets acquired from the experiments are compared and correlated with computational fluid dynamics (CFD) simulation data. In addition, angles obtained from another type of …


Experimental Validation Data For Cfd Of Transient Convection From Forced To Natural With Flow Reversal On A Vertical Flat Plate, Blake W. Lance, Barton L. Smith Jan 2015

Experimental Validation Data For Cfd Of Transient Convection From Forced To Natural With Flow Reversal On A Vertical Flat Plate, Blake W. Lance, Barton L. Smith

Engineering Datasets

Transient convection was investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation data. A specialized facility for validation experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified. Temperature profiles on …


High Temperature Flow Solver For Aerothermodynamics Problems, Huaibao Zhang Jan 2015

High Temperature Flow Solver For Aerothermodynamics Problems, Huaibao Zhang

Theses and Dissertations--Mechanical Engineering

A weakly ionized hypersonic flow solver for the simulation of reentry flow is firstly developed at the University of Kentucky. This code is the fluid dynamics module of known as Kentucky Aerothermodynamics and Thermal Response System (KATS). The solver uses a second-order finite volume approach to solve the laminar Navier– Stokes equations, species mass conservation and energy balance equations for flow in chemical and thermal non-equilibrium state, and a fully implicit first-order backward Euler method for the time integration. The hypersonic flow solver is then extended to account for very low Mach number flow using the preconditioning and switch of …


Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain Jan 2015

Design Of A High Intensity Turbulent Combustion System, Mohammad Arif Hossain

Open Access Theses & Dissertations

In order to design next generation gas turbine combustor and rocket engines, a systematic study of flame structure at high intensity turbulent flow is necessary. The fundamental study of turbulent premixed combustion has been a major research concern for decades. The work is focused on the design and development of a high intensity turbulent combustion system which can be operated at compressible (0.3 < M < 0.5), preheated (T0=500K) and premixed conditions in order to investigate the 'Thickened Flame' regime. An air-methane mixture has been used as the fuel for this study. An optically accessible backward-facing step stabilized combustor has been designed for a maximum operating pressure of 6 bar. A grid has been introduced with different blockage ratios (BR = 54%, 61% & 67%) in order to generate turbulence inside the combustor for the experiment. Optical access is provided via quartz windows on three sides of the combustion chamber. Finite Element Analysis (FEA) is done in order to verify the structural integrity of the combustor at rated conditions. In order to increase the inlet temperature of the air, a heating section was designed to use commercially available in-line heaters. Separate cooling subsystems have been designed for chamber cooling and exhaust cooling. The LabVIEW software interface has been selected as the control mechanism for the experimental setup. A 10 kHz Time Resolved Particle Image Velocimetry (TR-PIV) system and a 3 kHz Planer Laser Induced Fluorescence (PLIF) system have been integrated with the system in order to diagnose the flow field and the flame respectively. The primary understanding of the flow field inside the combustor was achieved through the use of Detached Eddy Simulation (DES) by using commercially available software package ANSYS FLUENT. Preliminary validation is done by 10 kHz TR-PIV technique. Both qualitative and quantitative analysis have been done for CFD and experiment. Major flow parameters such as average velocity, fluctuation of velocity, kinetic energy, and turbulent intensity have been calculated for two distinct Reynolds number (Re = 815 & 3500). PIV results are compared with CFD results which show significant agreement with each other.