Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Neutron Imaging Of Lithium (Li) Coolants Inside High Temperature Niobium (Nb) Heat Pipes, Brad Harrison Hight May 2014

Neutron Imaging Of Lithium (Li) Coolants Inside High Temperature Niobium (Nb) Heat Pipes, Brad Harrison Hight

Masters Theses

Lithium (Li) behavior inside a high temperature Nb-Li leading edge heat pipe was successfully imaged under induction heating operation via neutron imaging. Startup and cool-down operations gave visual confirmation of bulk Li movement using both gravity assisted and inverted operating orientations. The pipe was imaged during an operation cycle from ambient conditions, heated to a steady state temperature of 908.8 0C, and allowed to cool below 200°C. The experiment was performed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, and at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee.

Tomographic images …


Effect Of Niobium Clustering And Precipitation On Strength Of A Nbti-Microalloyed Ferritic Steel, Andrii Kostryzhev, Abdullah Alshahrani, Chen Zhu, Julie Cairney, Simon Peter Ringer, Chris Killmore, E V. Pereloma Jan 2014

Effect Of Niobium Clustering And Precipitation On Strength Of A Nbti-Microalloyed Ferritic Steel, Andrii Kostryzhev, Abdullah Alshahrani, Chen Zhu, Julie Cairney, Simon Peter Ringer, Chris Killmore, E V. Pereloma

Faculty of Engineering and Information Sciences - Papers: Part A

The microstructure-property relationship of an NbTi-microalloyed ferritic steel was studied as a function of thermo-mechanical schedule using Gleeble 3500 simulator, optical and scanning electron microscope, and atom probe tomography.


Characterization Of High-Purity Niobium Structures Fabricated Using The Electron Beam Melting Process, Cesar Adrian Terrazas Jan 2014

Characterization Of High-Purity Niobium Structures Fabricated Using The Electron Beam Melting Process, Cesar Adrian Terrazas

Open Access Theses & Dissertations

Additive Manufacturing (AM) refers to the varied set of technologies utilized for the fabrication of complex 3D components from digital data in a layer-by-layer fashion. The use of these technologies promises to revolutionize the manufacturing industry. The electron beam melting (EBM) process has been utilized for the fabrication of fully dense near-net-shape components from various metallic materials. This process, catalogued as a powder bed fusion technology, consists of the deposition of thin layers (50 - 120µm) of metallic powder particles which are fused by the use of a high energy electron beam and has been commercialized by Swedish company Arcam …