Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 51

Full-Text Articles in Engineering

High Performance Pure Sulfur Honeycomb-Like Architectures Synthesized By A Cooperative Self-Assembly Strategy For Lithium Sulfur Batteries, Xin Liang, Mohammad Kaiser, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Prof Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang Oct 2014

High Performance Pure Sulfur Honeycomb-Like Architectures Synthesized By A Cooperative Self-Assembly Strategy For Lithium Sulfur Batteries, Xin Liang, Mohammad Kaiser, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Prof Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang

Shi Xue Dou

Honeycomb-like pure sulfur architectures were synthesized by a cooperative self-assembly strategy, in which a soft template is used to form the porous structure. Their electrochemical performance is significantly improved comparing with the commercial sulfur powder and the as-prepared sulfur without honeycomb morphology. There has been no report on using a soft template to prepare honeycomb-like sulfur particles.


High-Performance Sodium-Ion Batteries And Sodium-Ion Pseudocapacitors Based On Mos2/Graphene Composites, Yunxiao Wang, Shulei Chou, David Wexler, Hua-Kun Liu, S X. Dou Oct 2014

High-Performance Sodium-Ion Batteries And Sodium-Ion Pseudocapacitors Based On Mos2/Graphene Composites, Yunxiao Wang, Shulei Chou, David Wexler, Hua-Kun Liu, S X. Dou

Shi Xue Dou

Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d-spacing, a contribution of the graphene matrix, and the …


Ultra-High Performance, High-Temperature Superconducting Wires Via Cost-Effective, Scalable, Co-Evaporation Process, Ho-Sup Kim, Sang-Soo Oh, Hong-Soo Ha, Dojun Youm, Seung-Hyun Moon, Jung Ho Kim, S X. Dou, Yoon-Uk Heo, Sung-Hun Wee, Amit Goyal Oct 2014

Ultra-High Performance, High-Temperature Superconducting Wires Via Cost-Effective, Scalable, Co-Evaporation Process, Ho-Sup Kim, Sang-Soo Oh, Hong-Soo Ha, Dojun Youm, Seung-Hyun Moon, Jung Ho Kim, S X. Dou, Yoon-Uk Heo, Sung-Hun Wee, Amit Goyal

Shi Xue Dou

Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 μm thick SmBa2Cu3O7 − δ (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. …


The Asian Evolution Of High Speed Rail, Philip G. Laird Aug 2014

The Asian Evolution Of High Speed Rail, Philip G. Laird

Dr Philip Laird

In Australia, in 2001, the Howard government released an East Coast HSR Scoping Study. This followed two major investigations by the private sector into HSR options for Australia; the first being a Sydney Canberra Melbourne Very Fast Train as proposed in 1984 by CSIRO, and the second being the Sydney Canberra Speed HSR proposal.


High Speed Rail In Australia - Much Studied And Slow To Start, Philip Laird Aug 2014

High Speed Rail In Australia - Much Studied And Slow To Start, Philip Laird

Dr Philip Laird

High Speed Rail or HSR with electric passenger trains operating at speeds of 250km/h or more is now operational in 11 countries and has been under recent consideration in Australia for future operation between Melbourne, Canberra, Sydney and Brisbane. The paper outlines HSR studies in Australia and conditionally quantifies the potential reduction of aviation fuel use at up to 0.5m litres per annum from the introduction of HSR by 2020 in Australia with a reduction of external costs at $540m per annum by 2020. In addition, HSR in Eastern Australia by 2020 could allow for some 300 slots to be …


Tensile Testing Of Individual Glassy, Rubbery And Hydrogel Electrospun Polymer Nanofibres To High Strain Using The Atomic Force Microscope, Adrian Gestos, Philip G. Whitten, Geoffrey M. Spinks, Gordon G. Wallace Mar 2014

Tensile Testing Of Individual Glassy, Rubbery And Hydrogel Electrospun Polymer Nanofibres To High Strain Using The Atomic Force Microscope, Adrian Gestos, Philip G. Whitten, Geoffrey M. Spinks, Gordon G. Wallace

Gordon Wallace

The production and use of polymer nanofibre assemblies prepared by electrospinning is now widespread. It is known that the tensile properties of electrospun polymer fibres can be different to those of bulk polymers. Here, we report a general method for measuring the tensile properties of individual electrospun nanofibres that employs a commercial atomic force microscope. Methods for preparing samples, force calibration and calculation of tensile stress and strain are described along with error estimation. By appropriate choice of AFM cantilever, it is shown that the tensile stress-strain curves can be measured for glassy, rubbery and gel polymer nanofibres. Testing can …


Cell Attachment And Proliferation On High Conductivity Pedot-Glycol Composites Produced By Vapour Phase Polymerisation, Elise M. Stewart, Manrico Fabretto, Mischa Mueller, Paul J. Molino, Hans J. Griesser, Robert D. Short, Gordon G. Wallace Mar 2014

Cell Attachment And Proliferation On High Conductivity Pedot-Glycol Composites Produced By Vapour Phase Polymerisation, Elise M. Stewart, Manrico Fabretto, Mischa Mueller, Paul J. Molino, Hans J. Griesser, Robert D. Short, Gordon G. Wallace

Gordon Wallace

High conductivity poly(3,4-ethylene dioxythiophene) (PEDOT) was synthesised using vacuum vapour phase polymerization (VVPP). The process produces PEDOT composites which incorporate glycol within the polymer. To assess biocompatibility, a suite of analytical techniques were utilised in an effort to characterise the level of glycol present and its impact on cell attachment and proliferation. A small decrease in fibroblast cell attachment and proliferation was observed with increasing glycol content within the PEDOT composite. Keratinocyte cell attachment and proliferation by comparison showed an increase. As such, the results herein indicate that cell attachment and proliferation depends on the individual cell lines used and …


High Strain Stretchable Solid Electrolytes, Sureyya Saricilar, Dennis Antiohos, Kewei Shu, Philip G. Whitten, Klaudia Wagner, Caiyun Wang, Gordon G. Wallace Mar 2014

High Strain Stretchable Solid Electrolytes, Sureyya Saricilar, Dennis Antiohos, Kewei Shu, Philip G. Whitten, Klaudia Wagner, Caiyun Wang, Gordon G. Wallace

Gordon Wallace

Wearable electronic devices that can be integrated seamlessly into clothing for monitoring and feedback need to be not only flexible, but also stretchable with low stiffness. Currently there are few solid electrolytes that are sufficiently stretchable for wearable electronic devices. Here we report stretchable solid electrolytes that can be elastically stretched more than 500% of their original length with ionic conductivities as high as 7 x 10(-5) S cm(-1) and tensile breaking strengths larger than 1.5 MPa. These solid electrolytes consist of poly(methyl methacrylate) chemical networks solvated by an electrochemically stable ionic liquid. A stretchable supercapacitor was demonstrated by coating …


Extrusion Printing Of Ionic-Covalent Entanglement Hydrogels With High Toughness, Shannon Bakarich, Marc In Het Panhuis, Stephen T. Beirne, Gordon G. Wallace, Geoffrey Maxwell Spinks Mar 2014

Extrusion Printing Of Ionic-Covalent Entanglement Hydrogels With High Toughness, Shannon Bakarich, Marc In Het Panhuis, Stephen T. Beirne, Gordon G. Wallace, Geoffrey Maxwell Spinks

Gordon Wallace

Three-dimensional (3D) printing of hydrogels has recently been investigated for use in tissue engineering applications. One major limitation in the use of synthetic hydrogels is their poor mechanical robustness but the development of ‘tough hydrogels’ in conjunction with additive fabrication techniques will accelerate the advancement of many technologies including soft robotics, bionic implants, sensors and controlled release systems. This article demonstrates that ionic–covalent entanglement (ICE) gels can be fabricated through a modified extrusion printing process that facilitates in situ photopolymerisation. The rheological properties of alginate–acrylamide hydrogel precursor solutions were characterised to develop formulations suitable for extrusion printing. A range of …


Exploiting High Quality Pedot:Pss-Swnt Composite Formulations For Wet-Spinning Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace Mar 2014

Exploiting High Quality Pedot:Pss-Swnt Composite Formulations For Wet-Spinning Multifunctional Fibers, Rouhollah Jalili, Joselito M. Razal, Gordon G. Wallace

Gordon Wallace

In order to exploit the inherent properties of carbon nanotubes (CNT) in any polymer composite, systematic control of carbon nanotube loading and protocols that mitigate against CNT bundling are required. If such composites are to be rendered in fiber form via wet-spinning, then CNT bundling during the coagulation process must also be avoided. Here we have achieved this by utilizing highly exfoliated single walled carbon nanotubes (SWNT) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonicacid) (PEDOT:PSS) to obtain wet-spinnable composite formulations at various nanotube volume fractions (Vf). The addition of only 0.02 Vf of aggregate-free and individually dispersed SWNT resulted in a significant enhancement of modulus, …


Formation Of Magnesium Diboride-Based Materials With High Critical Currents And Mechanical Characteristics By High-Pressure Synthesis, Tetiana Prikhna, W. Gawalek, Ya M. Savchuk, N. V. Sergienko, V. E. Moshchil, M. Wendt, M. Zeisberger, T. Habisreuther, V. B. Sverdun, S X. Dou, S. N. Dub, V. S. Melnikov, Ch Schmidt, J. Dellith, P. A. Nagorny Mar 2014

Formation Of Magnesium Diboride-Based Materials With High Critical Currents And Mechanical Characteristics By High-Pressure Synthesis, Tetiana Prikhna, W. Gawalek, Ya M. Savchuk, N. V. Sergienko, V. E. Moshchil, M. Wendt, M. Zeisberger, T. Habisreuther, V. B. Sverdun, S X. Dou, S. N. Dub, V. S. Melnikov, Ch Schmidt, J. Dellith, P. A. Nagorny

Shi Xue Dou

The developed method of high-pressure synthesis (HPS) allows producing nanostructural highly dense material based on MGB2, which possesses the highest superconducting and mechanical characteristics among the known world analogues, in the form of blocks that are suitable for application in SC electromotors and pumps. Additions of Zr can increase critical current density (jc) of synthesized at 2 GPa and 750-800 °C MGB2 in the same manner as additions of Ta or Ti, i.e. due to the absorption of impurity hydrogen forming the ZrH2. The formation of ZrB2 phase at higher synthesis temperatures (about 950 °C) in HPS MGB2 does not …


Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou Mar 2014

Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou

Shi Xue Dou

A high performance Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by the microwave-assisted hydrothermal method followed by a post annealing process. The synchrotron X-ray diffraction analysis results confirmed that single-phase Li3V2(PO4)3 with monoclinic structure was obtained. Scanning electron microscope and transmission electron microscope images revealed that the as-prepared Li3V 2(PO4)3 was composed of nanowires and microsized particles. Electrochemical results demonstrated that the Li 3V2(PO4)3 electrode measured at 10 C after 500 cycles can deliver discharge capacities of 85.4 mAh g-1 and 103.4 mAh g-1, with a capacity retention of 99.3% and 95.9%, in the voltage ranges of 3.0-4.3 …


Synergetic Combination Of Limd With Chpd For The Production Of Economical And High Performance Mgb2 Wires, Minoru Maeda, Md Shahriar Ai Hossain, Ashkan Motaman, Jung Ho Kim, Anna Kario, Matt Rindfleisch, Mike Tomsic, S X. Dou Mar 2014

Synergetic Combination Of Limd With Chpd For The Production Of Economical And High Performance Mgb2 Wires, Minoru Maeda, Md Shahriar Ai Hossain, Ashkan Motaman, Jung Ho Kim, Anna Kario, Matt Rindfleisch, Mike Tomsic, S X. Dou

Shi Xue Dou

We propose an economical fabrication concept, the localized internal magnesium diffusion (IMD) method. Instead of using a single magnesium (Mg) rod in the center of a metal sheath tube, we use large-sized Mg particles (20-50 mesh) mixed well with cheap 97% crystalline boron powder to fill the metal sheath tube. After a repeated drawing process, the coarse Mg is elongated along the core wire axis of the metal sheath tube. Textured MgB2 grains are then formed during the sintering process. In the localized IMD process, however, there is still a need to improve the overall density. In order to increase …


A Hybrid Electrolyte Energy Storage Device With High Energy And Long Life Using Lithium Anode And Mno2 Nanoflake Cathode, Shulei Chou, Yun-Xiao Wang, Jiantie Xu, Jia-Zhao Wang, Hua-Kun Liu, S X. Dou Mar 2014

A Hybrid Electrolyte Energy Storage Device With High Energy And Long Life Using Lithium Anode And Mno2 Nanoflake Cathode, Shulei Chou, Yun-Xiao Wang, Jiantie Xu, Jia-Zhao Wang, Hua-Kun Liu, S X. Dou

Shi Xue Dou

A hybrid electrolyte energy storage system combining the features of supercapacitors and lithium batteries has been constructed. It consists of MnO2 nanoflakes in 1 M Li2SO4 aqueous electrolyte as the cathode and lithium foil in ionic liquid (1 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) in N-methyl-N-propyl pyrrolidinium bis(trifluoromethanesulfonyl)imide ([C(3)mpyr][NTf2])) electrolyte as the anode, separated by a lithium super ionic conductor glass ceramic film (LiSICON). This system shows the advantages of both a supercapacitor (long cycle life) and a lithium battery (high energy), as well as low cost and improved safety due to the combination of ionic liquid and ceramic solid state electrolyte …


The Electrochemical Properties Of High-Capacity Sulfur/Reduced Graphene Oxide With Different Electrolyte Systems, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Mar 2014

The Electrochemical Properties Of High-Capacity Sulfur/Reduced Graphene Oxide With Different Electrolyte Systems, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Shi Xue Dou

The lithium/sulfur battery is a promising electrochemical system with high capacity, which is well-known to undergo a complex multistep reaction during the discharge process. Two types of electrolytes including poly (ethylene glycol) dimethyl ether (PEGDME)-based and 1.3 - dioxolane (DOL)/ dimethoxyethane (DME)-based electrolytes were investigated here. Furthermore, LiNO3 additive was introduced into the electrolyte in order to effectively eliminate the overcharge effect. The lithium sulfur battery with 1.0 M LiN(CF3SO2)2 in PEGME with 0.1 M LiNo3 shows highly stable reversible capacity of 624.8 mAh g-1 after 200 cycles and improved average coulombic efficiency of 98 percent.


The Feasibility Study And Characterziation Of A Two-Dimensional Diode Array In “Magic Phantom” For High Dose Rate Brachytherapy Quality Assurance, A Espinoza, B Beeksma, M Petasecca, I Fuduli, C Porumb, D L. Cutajar, S Corde, M A. Jackson, M Lf Lerch, Anatoly B. Rosenfeld Feb 2014

The Feasibility Study And Characterziation Of A Two-Dimensional Diode Array In “Magic Phantom” For High Dose Rate Brachytherapy Quality Assurance, A Espinoza, B Beeksma, M Petasecca, I Fuduli, C Porumb, D L. Cutajar, S Corde, M A. Jackson, M Lf Lerch, Anatoly B. Rosenfeld

Stéphanie Corde

High dose rate (HDR) brachytherapy is a radiation treatment technique capable of delivering large dose rates to the tumor. Radiation is delivered using remote afterloaders to drive highly active sources (commonly 192Ir with an air KERMA strength range between 20 000 and 40 000 U, where 1 U = 1 uGy m2/h in air) through applicators directly into the patient's prescribed region of treatment. Due to the obvious ramifications of incorrect treatment while using such an active source, it is essential that there are methods for quality assurance (QA) that can directly and accurately verify the treatment plan and the …


Mesoporous Hexagonal Co3o4 For High Performance Lithium Ion Batteries, Dawei Su, Xiuqiang Xie, Paul Munroe, S X. Dou, Guoxiu Wang Jan 2014

Mesoporous Hexagonal Co3o4 For High Performance Lithium Ion Batteries, Dawei Su, Xiuqiang Xie, Paul Munroe, S X. Dou, Guoxiu Wang

Australian Institute for Innovative Materials - Papers

Mesoporous Co3O4 nanoplates were successfully prepared by the conversion of hexagonal beta-Co(OH)(2) nanoplates. TEM, HRTEM and N-2 sorption analysis confirmed the facet crystal structure and inner mesoporous architecture. When applied as anode materials for lithium storage in lithium ion batteries, mesoporous Co3O4 nanocrystals delivered a high specific capacity. At 10 degrees C current rate, as-prepared mesoporous Co3O4 nanoplates delivered a specific capacity of 1203 mAh/g at first cycle and after 200 cycles it can still maintain a satisfied value (330 mAh/g). Fromex-situ TEM, SAED and FESEM observation, it was found that mesoporous Co3O4 nanoplates were reduced to Li2O and Co …


Sulfur-Graphene Nanostructured Cathodes Via Ball-Milling For High-Performance Lithium-Sulfur Batteries, Jiantie Xu, Jianglan Shui, Jianli Wang, Min Wang, Hua-Kun Liu, S X. Dou, In-Yup Jeon, Jeong-Min Seo, Jong-Beom Baek, Liming Dai Jan 2014

Sulfur-Graphene Nanostructured Cathodes Via Ball-Milling For High-Performance Lithium-Sulfur Batteries, Jiantie Xu, Jianglan Shui, Jianli Wang, Min Wang, Hua-Kun Liu, S X. Dou, In-Yup Jeon, Jeong-Min Seo, Jong-Beom Baek, Liming Dai

Australian Institute for Innovative Materials - Papers

Although much progress has been made to develop high-performance lithium-sulfur batteries (LSBs), the reported physical or chemical routes to sulfur cathode materials are often multistep/complex and even involve environmentally hazardous reagents, and hence are infeasible for mass production. Here, we report a simple ball-milling technique to combine both the physical and chemical routes into a one-step process for low-cost, scalable, and eco-friendly production of graphene nanoplatelets (GnPs) edge-functionalized with sulfur (S-GnPs) as highly efficient LSB cathode materials of practical significance. LSBs based on the S-GnP cathode materials, produced by ball-milling 70 wt % sulfur and 30 wt % graphite, delivered …


Na3v2(Po4)3 Particles Partly Embedded In Carbon Nanofibers With Superb Kinetics For Ultra-High Power Sodium Ion Batteries, Junghoon Yang, Dongwook Han, Mi Ru Jo, Kyeongse Song, Yongil Kim, Shulei Chou, Hua-Kun Liu, Yong-Mook Kang Jan 2014

Na3v2(Po4)3 Particles Partly Embedded In Carbon Nanofibers With Superb Kinetics For Ultra-High Power Sodium Ion Batteries, Junghoon Yang, Dongwook Han, Mi Ru Jo, Kyeongse Song, Yongil Kim, Shulei Chou, Hua-Kun Liu, Yong-Mook Kang

Australian Institute for Innovative Materials - Papers

We here describe the extraordinary performance of NASICON Na3V2(PO4)3-carbon nanofiber (NVP-CNF) composites with ultra-high power and excellent cycling performance. NVP-CNFs are composed of CNFs at the center part and partly embedded NVP nanoparticles in the shell. We first report this unique morphology of NVP-CNFs for the electrode material of secondary batteries as well as for general energy conversion materials. Our NVP-CNFs show not only a high discharge capacity of approx. 88.9 mA h g-1 even at a high current density of 50 C but also approx. 93% cyclic retention property after …


Novel Germanium/Polypyrrole Composite For High Power Lithium-Ion Batteries, Xuanwen Gao, Wenbin Luo, Chao Zhong, David Wexler, Shulei Chou, Hua-Kun Liu, Zhicong Shi, Guohua Chen, Kiyoshi Ozawa, Jiazhao Wang Jan 2014

Novel Germanium/Polypyrrole Composite For High Power Lithium-Ion Batteries, Xuanwen Gao, Wenbin Luo, Chao Zhong, David Wexler, Shulei Chou, Hua-Kun Liu, Zhicong Shi, Guohua Chen, Kiyoshi Ozawa, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Nano-Germanium/polypyrrole composite has been synthesized by chemical reduction method in aqueous solution. The Ge nanoparticles were directly coated on the surface of the polypyrrole. The morphology and structural properties of samples were determined by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Thermogravimetric analysis was carried out to determine the polypyrrole content. The electrochemical properties of the samples have been investigated and their suitability as anode materials for the lithium-ion battery was examined. The discharge capacity of the Ge nanoparticles calculated in the Ge-polypyrrole composite is 1014 mAh g-1 after 50 cycles at 0.2 C rate, which is …


Large Scale Production Of Novel G-C3n4 Micro Strings With High Surface Area And Versatile Photodegradation Ability, Muhammad Nawaz Tahir, Chuanbao Cao, Faheem K. Butt, Sajid Butt, Faryal Idrees, Zulfiqar Ali, Imran Aslam, M Tanveer, Asif Mahmood, Nasir Mahmood Jan 2014

Large Scale Production Of Novel G-C3n4 Micro Strings With High Surface Area And Versatile Photodegradation Ability, Muhammad Nawaz Tahir, Chuanbao Cao, Faheem K. Butt, Sajid Butt, Faryal Idrees, Zulfiqar Ali, Imran Aslam, M Tanveer, Asif Mahmood, Nasir Mahmood

Australian Institute for Innovative Materials - Papers

An easy, scalable and environmentally benign chemical method has been developed to synthesize micro strings of graphitic-C3N4 (msg-C3N4) through pre-treatment of melamine with HNO 3 in alkaline solvent at low temperature. This methodology results in a unique string type morphology of msg-C3N4 with higher surface area. These msg-C3N4 micro strings were used as a photocatalyst under visible light for photodegradation of rhodamine B, methyl blue and methyl orange. The msg-C3N4 shows enhanced photodegradation efficiency due to its high surface area and favourable bandgap. The first order rate constant for msg-C3N4 was measured which confirms the higher performance of msg-C3N4 in …


Microemulsion-Assisted Synthesis Of Nanosized Li-Mn-O Spinel Cathodes For High-Rate Lithium-Ion Batteries, Xianhong Rui, Wenping Sun, Qingyu Yan, Tuti M. Lim, Maria Skyllas-Kazacos Jan 2014

Microemulsion-Assisted Synthesis Of Nanosized Li-Mn-O Spinel Cathodes For High-Rate Lithium-Ion Batteries, Xianhong Rui, Wenping Sun, Qingyu Yan, Tuti M. Lim, Maria Skyllas-Kazacos

Australian Institute for Innovative Materials - Papers

Li1.16Mn1.84O4 nanoparticles (50-90 nm) with cubic spinel structure are synthesized by combining a microemulsion process to produce ultrafine Mn(OH)2 nanocrystals (3-8 nm) with a solid-state lithiation step. The nanostructured lithium-rich Li1.16Mn1.84O4 shows stable cycling performance and superior rate capabilities as compared with the corresponding bulk material, for example, the nano-sized Li1.16Mn1.84O4 electrode shows stable reversible capacities of 74 mAhg-1 during the 1000th cycle at a high rate of 40 C between 3.0 and 4.5 V. In addition, Li1.16Mn1.84O4 nanoparticles also show high Li storage properties over an enlarged voltage window of 2.0-4.5 V with high capacities and stable cyclability, for …


Achieving Single Domain Relaxor-Pt Crystals By High Temperature Poling, Fei Li, Linghang Wang, Li Jin, Zhuo Xu, Shujun Zhang Jan 2014

Achieving Single Domain Relaxor-Pt Crystals By High Temperature Poling, Fei Li, Linghang Wang, Li Jin, Zhuo Xu, Shujun Zhang

Australian Institute for Innovative Materials - Papers

Single domain relaxor-PT crystals are important from both fundamental and application viewpoints. Compared to domain engineered relaxor-PT crystals, however, single domain crystals are prone to cracking during poling. In this paper, based on the analysis of the cracking phenomenon in [001] poled tetragonal 0.25Pb(In0.5Nb0.5)O3-0.37Pb(Mg 1/3Nb2/3)O3-0.38PbTiO3 (PIN-PMN-PT) crystals, the non-180°ferroelastic domain switching was thought to be the dominant factor for cracking during the poling process. A high temperature poling technique, by which the domain switching can be greatly avoided, was proposed to achieve the single domain relaxor-PT crystals. By this poling approach, a quasi-single domain crystal was obtained without cracks. In …


Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou Jan 2014

Three-Dimensional-Network Li3v2(Po4) 3/C Composite As High Rate Lithium Ion Battery Cathode Material And Its Compatibility With Ionic Liquid Electrolytes, Jiantie Xu, Shulei Chou, Cuifeng Zhou, Qinfen Gu, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

A high performance Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by the microwave-assisted hydrothermal method followed by a post annealing process. The synchrotron X-ray diffraction analysis results confirmed that single-phase Li3V2(PO4)3 with monoclinic structure was obtained. Scanning electron microscope and transmission electron microscope images revealed that the as-prepared Li3V 2(PO4)3 was composed of nanowires and microsized particles. Electrochemical results demonstrated that the Li 3V2(PO4)3 electrode measured at 10 C after 500 cycles can deliver discharge capacities of 85.4 mAh g-1 and 103.4 mAh g-1, with a capacity retention of 99.3% and 95.9%, in the voltage ranges of 3.0-4.3 …


Ultra-High Performance, High-Temperature Superconducting Wires Via Cost-Effective, Scalable, Co-Evaporation Process, Ho-Sup Kim, Sang-Soo Oh, Hong-Soo Ha, Dojun Youm, Seung-Hyun Moon, Jung Ho Kim, S X. Dou, Yoon-Uk Heo, Sung-Hun Wee, Amit Goyal Jan 2014

Ultra-High Performance, High-Temperature Superconducting Wires Via Cost-Effective, Scalable, Co-Evaporation Process, Ho-Sup Kim, Sang-Soo Oh, Hong-Soo Ha, Dojun Youm, Seung-Hyun Moon, Jung Ho Kim, S X. Dou, Yoon-Uk Heo, Sung-Hun Wee, Amit Goyal

Australian Institute for Innovative Materials - Papers

Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 μm thick SmBa2Cu3O7 − δ (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. …


Strain-Responsive Polyurethane/Pedot:Pss Elastomeric Composite Fibers With High Electrical Conductivity, Mohammad Ziabari Seyedin, Joselito M. Razal, Peter C. Innis, Gordon G. Wallace Jan 2014

Strain-Responsive Polyurethane/Pedot:Pss Elastomeric Composite Fibers With High Electrical Conductivity, Mohammad Ziabari Seyedin, Joselito M. Razal, Peter C. Innis, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

It is a challenge to retain the high stretchability of an elastomer when used in polymer composites. Likewise, the high conductivity of organic conductors is typically compromised when used as filler in composite systems. Here, it is possible to achieve elastomeric fiber composites with high electrical conductivity at relatively low loading of the conductor and, more importantly, to attain mechanical properties that are useful in strain-sensing applications. The preparation of homogenous composite formulations from poly­urethane (PU) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) that are also processable by fiber wet-spinning techniques are systematically evaluated. With increasing PEDOT:PSS loading in the fiber composites, the Young's …


High-Performance Sodium-Ion Batteries And Sodium-Ion Pseudocapacitors Based On Mos2/Graphene Composites, Yunxiao Wang, Shulei Chou, David Wexler, Hua-Kun Liu, S X. Dou Jan 2014

High-Performance Sodium-Ion Batteries And Sodium-Ion Pseudocapacitors Based On Mos2/Graphene Composites, Yunxiao Wang, Shulei Chou, David Wexler, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to deliver higher capacity than the intercalation reaction, but can also be applied in capacitive storage owing to its typically sloping charge/discharge curves. Here, NIBs and NICs based on a graphene composite (MoS2/G) were constructed. The enlarged d-spacing, a contribution of the graphene matrix, and the …


High Performance Pure Sulfur Honeycomb-Like Architectures Synthesized By A Cooperative Self-Assembly Strategy For Lithium Sulfur Batteries, Xin Liang, Mohammad Kaiser, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Prof Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang Jan 2014

High Performance Pure Sulfur Honeycomb-Like Architectures Synthesized By A Cooperative Self-Assembly Strategy For Lithium Sulfur Batteries, Xin Liang, Mohammad Kaiser, Konstantin Konstantinov, Richard Tandiono, Zhaoxiang Prof Zhaoxiang Wang, Hua-Kun Liu, S X. Dou, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

Honeycomb-like pure sulfur architectures were synthesized by a cooperative self-assembly strategy, in which a soft template is used to form the porous structure. Their electrochemical performance is significantly improved comparing with the commercial sulfur powder and the as-prepared sulfur without honeycomb morphology. There has been no report on using a soft template to prepare honeycomb-like sulfur particles.


Encoding High Dimensional Local Features By Sparse Coding Based Fisher Vectors, Lingqiao Liu, Chunhua Shen, Lei Wang, Anton Van Den Hengel, Chao Wang Jan 2014

Encoding High Dimensional Local Features By Sparse Coding Based Fisher Vectors, Lingqiao Liu, Chunhua Shen, Lei Wang, Anton Van Den Hengel, Chao Wang

Faculty of Engineering and Information Sciences - Papers: Part A

Deriving from the gradient vector of a generative model of local features, Fisher vector coding (FVC) has been identified as an effective coding method for image classification. Most, if not all, FVC implementations employ the Gaussian mixture model (GMM) to characterize the generation process of local features. This choice has shown to be sufficient for traditional low dimensional local features, e.g., SIFT; and typically, good performance can be achieved with only a few hundred Gaussian distributions. However, the same number of Gaussians is insufficient to model the feature space spanned by higher dimensional local features, which have become popular recently. …


Development Of High Melting Temperature Microencapsulated Phase Change Material For Compacted Thermal Energy Storage Bed, Weiguang Su, Jo Darkwa, Georgios Kokogiannakis Jan 2014

Development Of High Melting Temperature Microencapsulated Phase Change Material For Compacted Thermal Energy Storage Bed, Weiguang Su, Jo Darkwa, Georgios Kokogiannakis

Faculty of Engineering and Information Sciences - Papers: Part A

In this paper a novel high temperature microencapsulated phase change material (MEPCM) based on paraffin as the core material and MF resin as the shell material has been developed with the in-situ polymerization method for solar hot water storage application. The results showed that the type of emulsifier could influence core material content, the encapsulation efficiency as well as the latent heat capacity. Based on the results and analysis the study has shown that energy storage density could be increased by as much as 59% if 60wt% of MEPCM 1 was to be used in the proposed compacted MEPCM-water bed …