Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Cellulose Nanocrystals As A Material For Microencapsulation, Lauren C. Kennedy, Congwang Ye, Colton Steiner, Carlos Martinez Oct 2013

Cellulose Nanocrystals As A Material For Microencapsulation, Lauren C. Kennedy, Congwang Ye, Colton Steiner, Carlos Martinez

The Summer Undergraduate Research Fellowship (SURF) Symposium

Cellulose is an abundant, biodegradable, and inexpensive renewable polymer that is light in weight with high mechanical strength (Habibi, Lucia, Rojas 2010). Full fibers of cellulose have been used in many products such as plastics and textiles for over a century and a half, but recently, modern extraction techniques have made it possible to investigate uses for minuscule cellulose fibers (Habibi, Lucia, Rojas 2010). Through acid hydrolysis, cellulose fibers become rod-like nanostructures with a high aspect ratio that are known as Cellulose Nanocrystals (CNCs) (Habibi, Lucia, Rojas 2010). Since CNCs are biodegradable and derive from a renewable resource, finding ways …


Next Generation Crystal Viewing Tool, Zach Schaffter, Gerhard Klimeck Oct 2013

Next Generation Crystal Viewing Tool, Zach Schaffter, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

The science and engineering community is limited when it comes to crystal viewing software tools. Each tool lacks in a different area such as customization of structures or visual output. Crystal Viewer 2.0 was created to have all of these features in one program. This one tool simulates virtually any crystal structure with any possible material. The vtkvis widget offers users advanced visual options not seen in any other crystal viewing software. In addition, the powerful engine behind Crystal Viewer 2.0, nanoelectronic modeling 5 or (NEMO5), performs intensive atomic calculations depending on user input. A graphical user interface, or GUI, …


Efficiently Dispersing Carbon Nanotubes In Polyphenylene Sulfide, Kevin M. Sommer, R. Byron Pipes Oct 2013

Efficiently Dispersing Carbon Nanotubes In Polyphenylene Sulfide, Kevin M. Sommer, R. Byron Pipes

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermal plastics are replacing conventional metals in the aerospace, sporting, electronics, and other industries. Thermal plastics are able to withstand relatively high temperatures, have good fatigue properties, and are lighter than metals. Unfortunately, they are not very electrically conductive. However, adding carbon nanotubes to thermal plastics such as polyphenylene sulfide (PPS) can drastically increase the plastic's conductivity at a low weight percent of nanotubes called the percolation threshold. The percolation threshold is the point where adding a little more carbon nanotubes brings together the network of nanotubes and greatly increases the conductivity. We need to learn how to increase the …


Testing Self Healing Properties In Polymers, Hamsini Gopalakrishna, John Blendell Oct 2013

Testing Self Healing Properties In Polymers, Hamsini Gopalakrishna, John Blendell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Mussels and barnacles have the ability to stick to underwater surfaces with the help of a cross-linked protein structure. Reduction in the plastic consumption can be achieved by using toughened polymers. Synthesized cross-linking polymers can be used for underwater adhesion by mimicking the protein structure used by mussels and barnacles. One such polymer is poly(3,4-dihydroxystyrene-co-styrene) having enhanced toughness. Traditionally, blister tests measure the adhesion between a substrate to a surface but this was modified to serve as the driving force to drive crack propagation in controlled flaws. The modified blister tests were carried out on polystyrene (PS) samples. Once the …


Interfacial Rheological Mechanics Of A Non-Ionic, Tri-Block Copolymer At Water/Hexadecane Interface, Jerome J. Nash, Kendra Erk Oct 2013

Interfacial Rheological Mechanics Of A Non-Ionic, Tri-Block Copolymer At Water/Hexadecane Interface, Jerome J. Nash, Kendra Erk

The Summer Undergraduate Research Fellowship (SURF) Symposium

Growing interest on the stability of foams and emulsions has lead to concentrated research of interfacial rheology. The response of an interfacial layer to mechanical deformation in size and shape is dependent on its composition. [Miller 2010] This research analysis focused on the adsorption and rheological mechanics of the non-ionic, tri-block copolymer, Pluronic 17R4 at the water/hexadecane interface. The adsorption and viscoelastic properties of the interface were measured via methods of pendant drop tensiometry and dynamic oscillation with drop shape analysis software. Interfacial tension measurements were taken to study the surface pressures of Pluronic 17R4 solutions with concentrations ranging from …