Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Chemistry

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 176

Full-Text Articles in Engineering

Ternary Alloy Electrocatalysts For Oxygen Reduction Reaction, Jin Luo, Lefu Yang, Binghui Chen, Chuanjian Zhong Dec 2012

Ternary Alloy Electrocatalysts For Oxygen Reduction Reaction, Jin Luo, Lefu Yang, Binghui Chen, Chuanjian Zhong

Journal of Electrochemistry

Proton exchange membrane fuel cell represents an important electrochemical energy conversion device with many attractive features in terms of efficiency of energy conversion and minimization of environmental pollution. However, the large overpotential for oxygen reduction reaction at the cathode and the low activity, poor durability and high cost of platinum-based catalysts in the fuel cells constitute a focal point of major barriers to the commercialization of fuel cells. The development of nanostructured catalysts shows promises to addresses some of the challenging problems. The ability to engineer the composition and nanostructure of nanoalloy catalysts is important for developing active, robust and …


Electrocatalytic Activity Of Palladium Nanocatalysts Supported On Carbon Nanoparticles In Formic Acid Oxidation, Jie Huang, Zhiyou Zhou, Yang Song, Xiongwu Kang, Ke Liu, Wancheng Zhou, Shaowei Chen Dec 2012

Electrocatalytic Activity Of Palladium Nanocatalysts Supported On Carbon Nanoparticles In Formic Acid Oxidation, Jie Huang, Zhiyou Zhou, Yang Song, Xiongwu Kang, Ke Liu, Wancheng Zhou, Shaowei Chen

Journal of Electrochemistry

Palladium nanostructures were deposited onto carbon nanoparticle surface by a chemical reduction method. Transmission electron microscopic studies showed that whereas the resulting metal-carbon (Pd-CNP) nanocomposites exhibited a diameter of 20 to 30 nm, the metal components actually showed a cauliflower-like surface morphology that consisted of numerous smaller Pd nanoparticles (3 to 8 nm). Electrochemical studies showed that the effective surface area of the Pd-CNP nanoparticles was about 40% less than that of Pd black, possibly because the Pd nanoparticles were coated with a layer of carbon nanoparticles; yet, the Pd-CNP nanocomposites exhibited marked enhancement of the electrocatalytic activity in formic …


Electrochemical Performance Of Screen-Printed Composite Coatings Of Conducting Polymers And Carbon Nanotubes On Titanium Bipolar Plates In Aqueous Asymmetrical Supercapacitors, Xiaohang Zhou, George Z. Chen Dec 2012

Electrochemical Performance Of Screen-Printed Composite Coatings Of Conducting Polymers And Carbon Nanotubes On Titanium Bipolar Plates In Aqueous Asymmetrical Supercapacitors, Xiaohang Zhou, George Z. Chen

Journal of Electrochemistry

Composites of conducting polymers (polypyrrole and polyaniline) with acid treated multi-walled carbon nanotubes were formulated into printable aqueous inks, with the aid of functional additives (benzethonium chloride as a surfactant with or without polyvinyl alcohol as a binder). The inks were screen-printed as fairly uniform coatings of various mass loading densities and areas (up to 75 mg cm-2 and 100 cm2) on thin titanium plates (0.1 mm in thickness). These screen-printed plates were used to fabricate both unit cell and multi-cell stack of asymmetrical supercapacitors with screen-printed negative electrodes of activated carbon (pigment black) in aqueous electrolytes …


Electrocatalytic Oxidation Of Formic Acid On Pd/Ni Heterostructured Catalyst, Mingjun Ren, Liangliang Zou, Ju Chen, Ting Yuan, Qinghong Huang, Haifeng Zhang, Hui Yang, Songlin Feng Dec 2012

Electrocatalytic Oxidation Of Formic Acid On Pd/Ni Heterostructured Catalyst, Mingjun Ren, Liangliang Zou, Ju Chen, Ting Yuan, Qinghong Huang, Haifeng Zhang, Hui Yang, Songlin Feng

Journal of Electrochemistry

A Pd/Ni bimetallic nanostructured electrocatalyst was fabricated via a two-step reduction route. Owing to an epitaxial growth of Pd atoms on the surface of Ni nanoparticles, heterostructured Pd/Ni nanocomposites were formed and verified by high resolution transmission electron microscopy combined with energy-dispersion X-ray spectroscopy. X-ray diffraction confirmed that the as-prepared Pd/Ni nanocomposites possessed a single face-centered-cubic (fcc) Pd structure, probably due to a weaker diffraction intensity of metallic Ni and/or overlapping by that of Pd. The intrinsic catalytic activity on the Pd/Ni is higher than that on the Pd. Moreover, the durability of formic acid oxidation on the Pd/Ni was …


Adsorption And Electrooxidation Of Carbon Monoxide On Platinum Surfaces Modified With Sulfur, A. Mattox Mathew, W. Henney Matthew, Johnson Adam, Zou Shouzhong Dec 2012

Adsorption And Electrooxidation Of Carbon Monoxide On Platinum Surfaces Modified With Sulfur, A. Mattox Mathew, W. Henney Matthew, Johnson Adam, Zou Shouzhong

Journal of Electrochemistry

Adsorbed sulfur is commonly considered as a reaction poison. However, small amounts of sulfur on platinum significantly increase the surface reactivity toward carbon monoxide (CO) electrooxidation. For the solution CO oxidation, the onset potential was shifted up to over 300 mV negative to that on S-free surface, and the extent of the negative potential shift increases with the sulfur coverage (Xs) up to about 0.6. The enhanced CO oxidation also depends on the solution pH. For the adsorbed CO, at low sulfur coverages (Xs < 0.3), the oxidation peak potential is about 40 mV negative to that of the corresponding clean Pt. However, at higher coverages, the peak potential is about 30 mV more positive. Surface-enhanced Raman spectra show that the adsorption of sulfur significantly redshifts the Pt-CO stretching frequency. These observations are explained by the weakening of the Pt-CO bond and the hindrance of CO diffusion by Sads.


Kinetic Study Of Photoelectrochemical Oxidation Of Lignin Model Compounds On Tio2 Nanotubes, Min Tian, Daniel Liba, Aicheng Chen Dec 2012

Kinetic Study Of Photoelectrochemical Oxidation Of Lignin Model Compounds On Tio2 Nanotubes, Min Tian, Daniel Liba, Aicheng Chen

Journal of Electrochemistry

In this study, TiO2 nanotubes were prepared via the electrochemical oxidation of titanium substrates in a non-aqueous electrolyte and their morphology and microstructures were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photoelectrochemical oxidation of two lignin model compounds, 1-(3,4-dimethoxyphenoxy)-2-(2-methoxyphenoxy)-1,3-propanediol (DMP) and 3-hydroxy-1-(3,4-dimethoxyphenoxy)-2-(2-methoxyphenoxy)-1,3-propanone (HDM), was investigated. A new band appeared at ~304 nm during the photoelectrochemical oxidation of DMP. The rate of DMP intermediate formation was amplified with the increase of initial concentrations, while it was diminished with increased temperature. Despite the similarity in structure between HDM and DMP, there are only small increases in absorbance …


Advances And Challenges Of Intermediate Temperature Solid Oxide Fuel Cells: A Concise Review, Sanping Jiang Dec 2012

Advances And Challenges Of Intermediate Temperature Solid Oxide Fuel Cells: A Concise Review, Sanping Jiang

Journal of Electrochemistry

Fuel cell is an electrochemical energy conversion device to directly convert the chemical energy of fuels to electricity. Among all types of fuel cells, solid oxide fuel cells (SOFCs) operating at intermediate temperatures of 600~800 oC offer an attractive option that is much more fuel flexible than low temperature fuel cells such as proton exchange membrane fuel cells, and is suitable for a wide range of applications. However, two main challenges remain towards the commercial viability and acceptance of the SOFC technologies: the cost and durability. Both are critically dependent on the process, fabrication, performance, chemical and microstructural stability …


Exploring Computational Chemistry On Emerging Architectures, David Dewayne Jenkins Dec 2012

Exploring Computational Chemistry On Emerging Architectures, David Dewayne Jenkins

Doctoral Dissertations

Emerging architectures, such as next generation microprocessors, graphics processing units, and Intel MIC cards, are being used with increased popularity in high performance computing. Each of these architectures has advantages over previous generations of architectures including performance, programmability, and power efficiency. With the ever-increasing performance of these architectures, scientific computing applications are able to attack larger, more complicated problems. However, since applications perform differently on each of the architectures, it is difficult to determine the best tool for the job. This dissertation makes the following contributions to computer engineering and computational science. First, this work implements the computational chemistry variational …


Synthesis And Characterizations Of Pyridinium Salts Including Poly(Pyridinium Salt)S And Their Applications, Tae Soo Jo Dec 2012

Synthesis And Characterizations Of Pyridinium Salts Including Poly(Pyridinium Salt)S And Their Applications, Tae Soo Jo

UNLV Theses, Dissertations, Professional Papers, and Capstones

Pyridinium salts, both molecular and polymeric, are an interesting class of multifunctional materials that exhibit liquid-crystalline and light-emitting properties. Moreover, their properties can be easily tuned by introducing new types of anions or by modifying their chemical structures. This dissertation describes synthesis and characterization of poly(pyridinium salt)s containing macrocounterions and fluorene moieties in their backbones, synthesis and characterization of nanocomposites of poly(pyridinium salt)s with single-walled carbon nanotubes via non-covalent interactions, and synthesis and characterizations of pyridinium salts having different aliphatic linkages and their application in organic acid sensing.

First, all of these ionic polymers were prepared by either ring-transmutation or …


Refractive Index Chemical Sensing With Noble Metal Nanoparticles, Phillip Blake Dec 2012

Refractive Index Chemical Sensing With Noble Metal Nanoparticles, Phillip Blake

Graduate Theses and Dissertations

Chemical sensing is a key component in modern society, especially in engineering applications. Because of their widespread impact, improvements to chemical sensors are a significant area of research. One class of sensors, plasmonic sensors, is being heavily researched because of their ability to detect low levels of analyte in near real time without destroying the analyte. This work studies a new class of plasmonic sensor that utilizes diffractive coupling to improve sensor performance. Specifically, this work outlines the first study of diffractive coupling sensors with typical nanoparticle shapes. Sensitivity of this new class of sensor is directly compared to typical …


The Oxidation Of Hydrogen Peroxide On Nanostructured Rhodium Microelectrodes, N. Bartlett Philip, F. Esterle Thomas Oct 2012

The Oxidation Of Hydrogen Peroxide On Nanostructured Rhodium Microelectrodes, N. Bartlett Philip, F. Esterle Thomas

Journal of Electrochemistry

Mesoporous Rh films were deposited onto platinum microelectrodes from the H1 lyotropic liquid crystalline phase of C12EO8 (octaethyleneglycol monododecyl ether). The electrodes show well defined voltammetry for the oxidation and the reduction of hydrogen peroxide at low concentrations (<10 mmol•L-1) with excellent stability for operation at neutral pH. Based on the hysteresis in the current and the potential dependence the oxidation of hydrogen peroxide occurs through a CEE mechanism involving Rh(OH)3 on the mesoporous Rh electrode surface. At higher hydrogen peroxide concentrations the current reaches a plateau that is due to either saturation of the binding sites for hydrogen peroxide or limitation of the reaction due to acidification of the solution within the pores. For the thin films (below 200 nm) the hydrogen peroxide calibration curves we …


Electrochemical Synthesis Of Silver-Tetracyanoquinodimethane Nanorods At Agar Supported Water/1,2-Dichloroethane Interface, Li Huang, Yixian Wang, Michael V. Mirkin, Bin Ren, Dongping Zhan Oct 2012

Electrochemical Synthesis Of Silver-Tetracyanoquinodimethane Nanorods At Agar Supported Water/1,2-Dichloroethane Interface, Li Huang, Yixian Wang, Michael V. Mirkin, Bin Ren, Dongping Zhan

Journal of Electrochemistry

Silver-tetracyanoquinodimethane (AgTCNQ) is an important charge transfer salt due to its high conductivity and other electronic properties. In this communication, we report the synthesis of AgTCNQ at the liquid/liquid interface. Agar was used as a gelling agent to support water/1,2-dichloroethane (DCE) interface. Silver ions were transferred from the hydrogel into DCE phase, where they combined with TCNQ- to form AgTCNQ nanorods. The developed method can provide a new route for synthesis of functional materials based on the electrochemistry at the liquid/liquid interface.


Underpotential Deposition Of Copper On Pt(S)[N(100)X(110)] Stepped Surfaces, Gisbert Rubn, Climent Vctor, Herrero Enrique, M. Feliu Juan Oct 2012

Underpotential Deposition Of Copper On Pt(S)[N(100)X(110)] Stepped Surfaces, Gisbert Rubn, Climent Vctor, Herrero Enrique, M. Feliu Juan

Journal of Electrochemistry

The underpotential deposition of Cu on platinum stepped surfaces composed of (100) terraces and (110) monoatomic steps has been studied in different acidic solutions. It has been found that the initial stage of copper deposition on the surface takes place simultaneously on terrace and step sites, irrespective of the nature of the adsorbing anion. During the voltammetric deposition of a full monolayer, several peaks can be observed. The analysis of the dependence of the peak charge with the step density allows assigning the different peaks to different deposition sites. The peak appearing at most positive potentials corresponds to the deposition …


In Situ Pm-Irras Studies Of A Floating Bilayer Lipid Membrane At Au(111) Electrode Surface, Su Zhangfei, Kycia Annia, Jay Leitch J., Lipkowski Jacek Oct 2012

In Situ Pm-Irras Studies Of A Floating Bilayer Lipid Membrane At Au(111) Electrode Surface, Su Zhangfei, Kycia Annia, Jay Leitch J., Lipkowski Jacek

Journal of Electrochemistry

In situ Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was used to study the structure of a DMPC + cholesterol + GM1 floating bilayer lipid membrane (fBLM) at a Au(111) surface. 1-thio-beta-D-glucose (beta-Tg) was self-assembled onto the Au electrode to increase the overall hydrophilicity of the surface. The fBLM was deposited on the beta-Tg self-assembled monolayer (SAM) using a combination of Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) techniques. The carbohydrate headgroups of the GM1 molecules were physically adsorbed to the beta-Tg SAM forming a water rich cushion between the fBLM and the modified gold substrate. The PM-IRRAS spectra indicate that the DMPC molecules within …


Comparison Of Phenolic Compounds And Antioxidant Capacities Of Traditional Sorghum Beers With Other Alcoholic Beverages, Fatouma Abdoul-Latif, Romaric G. Bayili, Louis C. Obame, Mamoudou H. Dicko Prof. Oct 2012

Comparison Of Phenolic Compounds And Antioxidant Capacities Of Traditional Sorghum Beers With Other Alcoholic Beverages, Fatouma Abdoul-Latif, Romaric G. Bayili, Louis C. Obame, Mamoudou H. Dicko Prof.

Pr. Mamoudou H. DICKO, PhD

Thirty samples of sorghum beers “dolo” were selected from traditionally fermented household manufacturers from Burkina Faso. Dolo samples were screened for their total phenolic content, proanthocyanidins and putative antioxidant capacities, and were compared with industrial beers and wines. Total phenols were measured using the Folin-Ciocalteu method. Proanthocyanidins content were determined by the method of HCl-butanol hydrolysis. Antioxidant activities were evaluated both with 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the trolox equivalent antioxidant capacity (TEAC) using 2,2’-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid radical) (ABTS•+). The average contents of total phenols and proanthocyanidins were 506 μg GAE/ml of dolo and 45 μg APE/ml of dolo, respectively. An …


A Dipolar Coupling Based Strategy For Simultaneous Resonance Assignment And Structure Determination Of Protein Backbones, Fang Tian, Homayoun Valafar, James Prestegard Oct 2012

A Dipolar Coupling Based Strategy For Simultaneous Resonance Assignment And Structure Determination Of Protein Backbones, Fang Tian, Homayoun Valafar, James Prestegard

Homayoun Valafar

A new approach for simultaneous protein backbone resonance assignment and structure determination by NMR is introduced. This approach relies on recent advances in high-resolution NMR spectroscopy that allow observation of anisotropic interactions, such as dipolar couplings, from proteins partially aligned in field ordered media. Residual dipolar couplings are used for both geometric information and a filter in the assembly of residues in a sequential manner. Experimental data were collected in less than one week on a small redox protein, rubredoxin, that was 15N enriched but not enriched above 1% natural abundance in 13C. Given the acceleration possible with partial 13C …


Using Slow-Release Permanganate Candles To Remove Tce From A Low Permeable Aquifer At A Former Landfill, Mark D. Christenson, Ann Kambhu, Steve D. Comfort Oct 2012

Using Slow-Release Permanganate Candles To Remove Tce From A Low Permeable Aquifer At A Former Landfill, Mark D. Christenson, Ann Kambhu, Steve D. Comfort

School of Natural Resources: Faculty Publications

Past disposal of industrial solvents into unregulated landfills is a significant source of groundwater contamination. In 2009, we began investigating a former unregulated landfill with known trichloroethene (TCE) contamination. Our objective was to pinpoint the location of the plume and treat the TCE using in situ chemical oxidation (ISCO). We accomplished this by using electrical resistivity imaging (ERI) to survey the landfill and map the subsurface lithology. We then used the ERI survey maps to guide direct push groundwater sampling. A TCE plume (100-600 µg L-1) was identified in a low permeable silty-clay aquifer (Kh = 0.5 …


Ultimate Detectability Of Volatile Organic Compounds: How Much Further Can We Reduce Their Ambient Air Sample Volumes For Analysis?, Ki-Hyun Kim Oct 2012

Ultimate Detectability Of Volatile Organic Compounds: How Much Further Can We Reduce Their Ambient Air Sample Volumes For Analysis?, Ki-Hyun Kim

Ki-Hyun Kim

To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time of flight (TOF) mass spectrometry (MS). The performance of the TD-GC-TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatograms (TIC) and extracted ion chromatograms (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal to noise. …


Crystallization And Polymerization, Otto Vogl, Frank T. Traceski, Eric G. Vogl Oct 2012

Crystallization And Polymerization, Otto Vogl, Frank T. Traceski, Eric G. Vogl

Otto Vogl

No abstract provided.


A Novel Microfluidic Enrichment Technique For Carbonylated Proteins, Bryant C. Hollins Oct 2012

A Novel Microfluidic Enrichment Technique For Carbonylated Proteins, Bryant C. Hollins

Doctoral Dissertations

Proteins are the building blocks of cells in living organisms, and are composed of amino acids. The expression of proteins is regulated by the processes of transcription and translation. Proteins undergo post-translational modifications in order to dictate their role physiologically within a cell.

Not all post-translational modifications are beneficial for the protein or the cell. One type of post-translational modification, called carbonylation, irreversibly places a carbonyl group onto an amino acid residue, most commonly proline, lysine, arginine, and threonine. This modification can have severe consequences physiologically, including loss of solubility, loss of function, and protein aggregation.

Carbonylated proteins have commonly …


Rat Brain Pro-Oxidant Effects Of Peripherally Administered 5 Nm Ceria 30 Days After Exposure, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Rebecca L. Florence, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield Oct 2012

Rat Brain Pro-Oxidant Effects Of Peripherally Administered 5 Nm Ceria 30 Days After Exposure, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Rebecca L. Florence, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield

Chemistry Faculty Publications

The objective of this study was to determine the residual pro-or anti-oxidant effects in rat brain 30 days after systemic administration of a 5 nm citrate-stabilized ceria dispersion. A ∼4% aqueous ceria dispersion was iv-infused (0 or 85 mg/kg) into rats which were terminated 30 days later. Ceria concentration, localization, and chemical speciation in the brain was assessed by inductively coupled plasma mass spectrometry (ICP-MS), light and electron microscopy (EM), and electron energy loss spectroscopy (EELS), respectively. Pro- or anti-oxidant effects were evaluated by measuring levels of protein carbonyls (PC), 3-nitrotyrosine (3NT), and protein-bound-4-hydroxy-2-trans-nonenal (HNE) in the hippocampus, cortex, and …


Method And Apparatus For Jet-Assisted Drilling Or Cutting, David A. Summers, Klaus Woelk, Kenneth Doyle Oglesby, Greg Galecki Sep 2012

Method And Apparatus For Jet-Assisted Drilling Or Cutting, David A. Summers, Klaus Woelk, Kenneth Doyle Oglesby, Greg Galecki

Mining Engineering Faculty Research & Creative Works

An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.


Effects Of Thiophene Units On Substituted Benzothiadiazole And Benzodithiophene Copolymers For Photovoltaic Applications, Ping Ding, Yingping Zou, Cheng-Che Chu, Dequan Xiao, Chain-Shu Hsu Sep 2012

Effects Of Thiophene Units On Substituted Benzothiadiazole And Benzodithiophene Copolymers For Photovoltaic Applications, Ping Ding, Yingping Zou, Cheng-Che Chu, Dequan Xiao, Chain-Shu Hsu

Chemistry and Chemical Engineering Faculty Publications

Two conjugated copolymers, P1 and P2, comprising of benzodithiophene and 5, 6-dioctyloxy-benzothiadiazole (DOBT) derivatives with/without thiophene unit, were synthesized via Stille cross-coupling polymerization reaction. These copolymers are promising for the applications in BHJ solar cells due to their good solubilities, proper thermal stability and moderate hole mobility as well as low bandgap. The photovoltaic properties of the copolymers were investigated based on the blend of the different polymer/PC71BM weight ratio under AM1.5G illumination, 100 mW/cm2. The device with ITO/PEDOT:PSS/P2: PC71BM (1:2, w/w)/Ca/Al gave relatively better photovoltaic performance, with a power conversion efficiency of 1.55%.


Pictures From My Life With Polymer Science: Album 12, Otto Vogl Sep 2012

Pictures From My Life With Polymer Science: Album 12, Otto Vogl

Otto Vogl

No abstract provided.


Preparation And Electrochemical Performance Of Nanostructured Mno2 Materials, Wen Wu, Dan-Dan Zhou, Meng-Yan Hou, Yong-Yao Xia Aug 2012

Preparation And Electrochemical Performance Of Nanostructured Mno2 Materials, Wen Wu, Dan-Dan Zhou, Meng-Yan Hou, Yong-Yao Xia

Journal of Electrochemistry

Nanostructured MnO2 materials were prepared in a micro-emulsion medium using sodium dodecyl sulfate (SDS)as a surfactant by a redox reaction between potassium permanganate and aniline. The morphologies of the obtained MnO2 were critically dependent on the concentrations of SDS. The particle sizes varied with the change in the micro-emulsion medium. The optimized properties of MnO2 material obtained with the surfactant concentration of 0.2 mol.L-1 had a specific surface area of 228.2 m2.g-1, and delivered a specific capacitance of 237 F.g -1 in 1 mol.L-1 Li2SO4. Additionally, a …


Poly(Aniline/O-Nitroaniline): A High Capacity Cathode Material For Lithium Ion Batteries, Rui-Rui Zhao, Li-Min Zhu, Jiang-Feng Qian, Han-Xi Yang Aug 2012

Poly(Aniline/O-Nitroaniline): A High Capacity Cathode Material For Lithium Ion Batteries, Rui-Rui Zhao, Li-Min Zhu, Jiang-Feng Qian, Han-Xi Yang

Journal of Electrochemistry

Polyaniline can be used as a high capacity cathode material due to the advantages of material abundance and synthetic simplicity. However, its practical application in battery has been hindered by poor electrochemical utilization and cycling instability. To solve these problems, we synthesized the poly(aniline/o-Nitroaniline) (P(AN-oNA)) by introducing the electron-drawing group-nitroaniline onto the polyaniline chains, so as to enhance electrochemical utilization and stability of the polyaniline derivative. The as-prepared Li/P(AN-oNA) copolymer shows a greatly enhanced discharge capacities of 186 mAh.g-1 at initial cycles, about 37% higher than its parent PAN, and remains 168 mAh.g-1 after 60th cycle. Also, the …


Synthesis And Electrochemical Characterization Of Li3V2(Po4)3/C Cathode Material By Ball-Milling Assisted Microwave Method, Zhi-Yuan Tang, Wen-Feng Mao, Ji Yan, Wei Yuan, Xin-He Zhang Aug 2012

Synthesis And Electrochemical Characterization Of Li3V2(Po4)3/C Cathode Material By Ball-Milling Assisted Microwave Method, Zhi-Yuan Tang, Wen-Feng Mao, Ji Yan, Wei Yuan, Xin-He Zhang

Journal of Electrochemistry

The cathode materials of Li3V2(PO4)3/C were successfully synthesized by ball-milling assisted microwave method and the microwave irradiation time was also optimized. It is found that the Li3V2(PO4)3/C material obtained at a microwave power of 640 W for 18 min showed the best electrochemical performance with the initial reversible capacity of 101.3 mAh.g-1 and the remained 100.8 mAh.g-1 at 5C rate after 300 cycles. This excellent electrochemical capability may be resulted from good crystallinity, smaller and uniform particle size of the material, showing …


Influences Of Particle Size And Sulfuric Acid Treatment On The Electrochemical Performance Of Bamboo Charcoal, Yu Yao, Ai-Shui Yu Aug 2012

Influences Of Particle Size And Sulfuric Acid Treatment On The Electrochemical Performance Of Bamboo Charcoal, Yu Yao, Ai-Shui Yu

Journal of Electrochemistry

The bamboo charcoal had been milled and treated by sulfuric acid. The influences of as-prepared material particle size and sulfuric acid treatment on the electrochemical performance had been studied. The result displays that the bamboo charcoal with mean particle size about 5 μm has the best first coulombic efficiency. Sulfuric acid treatment could raise the discharge capacity of bamboo charcoal, and the first discharge capacity of 328.2 mAh.g-1 was obtained with the bamboo charcoal treated by sulfuric acid for 18 h. Furthermore, the capacity of 302.3 mAh.g-1 could be maintained for 50 cycles, showing good cycle performance.


Preparation And Performance Of Sn-Co-M-C(M = Zn, Fe)Composites As An Anode Material, Guo-Qing Fang, Wei-Wei Liu, Shi-Ci He, Qian Zhang, Jun-Wei Zheng, De-Cheng Li Aug 2012

Preparation And Performance Of Sn-Co-M-C(M = Zn, Fe)Composites As An Anode Material, Guo-Qing Fang, Wei-Wei Liu, Shi-Ci He, Qian Zhang, Jun-Wei Zheng, De-Cheng Li

Journal of Electrochemistry

The anode materials of Sn-Co-M-C (M = Zn, Fe) composites were prepared by carbothermal reduction method from metal oxides and sucrose in N2 atmosphere. Their structural and electrochemical properties were studied by XRD, SEM and charge-discharge test. Among them, the Sn-Co-Zn-C composite showed higher specific capacity and good cycle performance. The initial specific discharge capacity of 571 mAh.g-1 could be obtained, while 369 mAh.g-1 was still kept after 45 cycles.


Electrochemical Sensing Of Guanine And Adenine Based On The Boron-Doped Carbon Nanotubes Modified Electrode, Ya-Lin Xia, Chun-Yan Deng, Juan Xiang Aug 2012

Electrochemical Sensing Of Guanine And Adenine Based On The Boron-Doped Carbon Nanotubes Modified Electrode, Ya-Lin Xia, Chun-Yan Deng, Juan Xiang

Journal of Electrochemistry

In this work, the boron-doped carbon nanotubes (BCNTs) modified glassy carbon (GC) electrode was simply fabricated, and the electrochemical oxidation behaviors of guanine and adenine at the BCNTs/GC electrode were investigated. Compared with the bare GC and CNTs/GC electrodes, the BCNTs-modified electrode exhibited extraordinary electrocatalytic activity towards the oxidations of guanine and adenine as indicated by the obvious increase in current responses. Moreover, the peak separation between guanine and adenine was large enough for their potential recognition in mixture without any separation or pretreatment. Therefore, the simultaneous determination of guanine and adenine was successfully achieved. The BCNTs/GC electrode showed high …