Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Reverse Engineering Of Aircraft Wing Data Using A Partial Differential Equation Surface Model, Jacalyn M. Huband Jul 1997

Reverse Engineering Of Aircraft Wing Data Using A Partial Differential Equation Surface Model, Jacalyn M. Huband

Mathematics & Statistics Theses & Dissertations

Reverse engineering is a multi-step process used in industry to determine a production representation of an existing physical object. This representation is in the form of mathematical equations that are compatible with computer-aided design and computer-aided manufacturing (CAD/CAM) equipment. The four basic steps to the reverse engineering process are data acquisition, data separation, surface or curve fitting, and CAD/CAM production. The surface fitting step determines the design representation of the object, and thus is critical to the success or failure of the reverse engineering process. Although surface fitting methods described in the literature are used to model a variety of …


Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso Apr 1997

Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso

Mechanical & Aerospace Engineering Theses & Dissertations

A hybrid automatic differentiation/incremental iterative method was implemented in the general purpose advanced computational fluid dynamics code (CFL3D Version 4.1) to yield a new code (CFL3D.ADII) that is capable of computing consistently discrete first order sensitivity derivatives for complex geometries. With the exception of unsteady problems, the new code retains all the useful features and capabilities of the original CFL3D flow analysis code. The superiority of the new code over a carefully applied method of finite-differences is demonstrated.

A coarse grain, scalable, distributed-memory, parallel version of CFL3D.ADII was developed based on "derivative stripmining". In this data-parallel approach, an identical copy …


Aerodynamic Gradient-Based Optimization Using Computational Fluid Dynamics And Discrete Sensitivities For Practical Problems, Mohagna Jayendrarai Pandya Apr 1997

Aerodynamic Gradient-Based Optimization Using Computational Fluid Dynamics And Discrete Sensitivities For Practical Problems, Mohagna Jayendrarai Pandya

Mechanical & Aerospace Engineering Theses & Dissertations

A gradient-based shape optimization methodology based on quasi-analytical sensitivities has been developed for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin Layer Navier-Stokes (TLNS) equations. The flow equations and aerodynamic sensitivity equation have been solved using an alternating-direction-implicit (ADI) algorithm for memory efficiency. A wing geometry model based on space-surface and planform parameterization has been utilized. The present methodology and its components have been tested via several comparisons.

Initially, the inviscid flow analysis for a wing has been compared with those obtained using an unfactored, Preconditioned Conjugate …


Input Design For Systems Under Identification Using Indirect And Direct Methods, Marco P. Schoen Mar 1997

Input Design For Systems Under Identification Using Indirect And Direct Methods, Marco P. Schoen

Mechanical & Aerospace Engineering Theses & Dissertations

The motivation for system identification can be manifold. In this work, the provocation to identify unknown system characteristics is derived from the control engineering point of view. That is, one intends to design a control strategy based on the identified system properties. The used system identification methods are the Open-Loop Kalman filter System Identification method (OKID) and the Closed-Loop System Identification method (CLID). It is shown that the quantitative largest error of the system identification is given by its model representation, that is the attempt to describe a system with model parameters which poses a linear relationship with the input/output …