Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1996

Series

Current density

Articles 1 - 4 of 4

Full-Text Articles in Engineering

A Model For The Galvanostatic Deposition Of Nickel Hydroxide, Mahesh Murthy, Gowri S. Nagarajan, John W. Weidner, John W. Van Zee Jan 1996

A Model For The Galvanostatic Deposition Of Nickel Hydroxide, Mahesh Murthy, Gowri S. Nagarajan, John W. Weidner, John W. Van Zee

Faculty Publications

A mathematical model is presented for the galvanostatic deposition of Ni(OH)2 films in stagnant Ni(NO3)2 solutions. The objective is to quantify the anomalous deposition behavior reported previously in which the utilization of the electrochemically generated OH species decreased drastically as the concentration of Ni(NO3)2 increased beyond 0.1 M. For example as the Ni(NO3)2 concentration increased from 0.1 to 2.0 M, the deposition rate decreased by a factor of ten at 2.5 mA/cm2. At this high ratio of concentration to current density, a comparison with Faraday's …


Anomalous Codeposition Of Fe-Ni Alloys And Fe-Ni-Sio2 Composites Under Potentiostatic Conditions, M. Ramasubramanian, S. N. Popova, Branko N. Popov, Ralph E. White, K. M. Yin Jan 1996

Anomalous Codeposition Of Fe-Ni Alloys And Fe-Ni-Sio2 Composites Under Potentiostatic Conditions, M. Ramasubramanian, S. N. Popova, Branko N. Popov, Ralph E. White, K. M. Yin

Faculty Publications

A mathematical model has been developed to describe the electrodeposition of Fe-Ni alloys and Fe-Ni-SiO2 composites under potentiostatic conditions. This model can be used to predict the polarization behavior, partial current densities, and alloy composition of each of the components as a function of the applied potential. Fe-Ni-SiO2 samples were deposited on platinum rotating disk electrodes from sulfate electrolytes under potentiostatic conditions, and the results obtained were compared to the model. The model predictions were found to agree well with the experimental observations for the Fe-Ni and Fe-Ni-SiO2 systems.


Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White Jan 1996

Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White

Faculty Publications

Electrochemical properties of bare and copper-coated LaNi4.27Sn0.24 electrodes were investigated in alkaline solution. The exchange current density, polarization resistance, and equilibrium potential were determined as functions of the state of charge in the electrodes. The symmetry factors for bare and copper-coated electrodes were estimated to be 0.53 and 0.52, respectively. By using a constant current discharge technique, the hydrogen diffusion coefficient in bare and coated LaNi4.27Sn0.24 was estimated to be 6.75 × 10–11 cm2/s.


Application Of Porous Electrode Theory On Metal Hydride Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White Jan 1996

Application Of Porous Electrode Theory On Metal Hydride Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White

Faculty Publications

Porous electrode theory was applied to estimate the exchange current density, the polarization resistance, and symmetry factor for LaNi4.27Sn0.24 hydride electrode in alkaline solution. The exchange current density, polarization resistance, and symmetry factor were determined from polarization curves which were obtained at low overpotentials.