Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 88

Full-Text Articles in Engineering

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad Dec 2023

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad

Theses and Dissertations

Running computer vision algorithms requires complex devices with lots of computing power, these types of devices are not well suited for space deployment. The harsh radiation environment and limited power budgets have hindered the ability of running advanced computer vision algorithms in space. This problem makes running an on-orbit servicing detection algorithm very difficult. This work proposes using a low powered FPGA to accelerate the computer vision algorithms that enable satellite component feature extraction. This work uses AMD/Xilinx’s Zynq SoC and DPU IP to run model inference. Experiments in this work centered around improving model post processing by creating implementations …


Qasm-To-Hls: A Framework For Accelerating Quantum Circuit Emulation On High-Performance Reconfigurable Computers, Anshul Maurya Dec 2023

Qasm-To-Hls: A Framework For Accelerating Quantum Circuit Emulation On High-Performance Reconfigurable Computers, Anshul Maurya

Theses and Dissertations

High-performance reconfigurable computers (HPRCs) make use of Field-Programmable Gate Arrays (FPGAs) for efficient emulation of quantum algorithms. Generally, algorithm-specific architectures are implemented on the FPGAs and there is very little flexibility. Moreover, mapping a quantum algorithm onto its equivalent FPGA emulation architecture is challenging. In this work, we present an automation framework for converting quantum circuits to their equivalent FPGA emulation architectures. The framework processes quantum circuits represented in Quantum Assembly Language (QASM) and derives high-level descriptions of the hardware emulation architectures for High-Level Synthesis (HLS) on HPRCs. The framework generates the code for a heterogeneous architecture consisting of a …


A Design Strategy To Improve Machine Learning Resiliency Of Physically Unclonable Functions Using Modulus Process, Yuqiu Jiang Dec 2023

A Design Strategy To Improve Machine Learning Resiliency Of Physically Unclonable Functions Using Modulus Process, Yuqiu Jiang

Theses and Dissertations

Physically unclonable functions (PUFs) are hardware security primitives that utilize non-reproducible manufacturing variations to provide device-specific challenge-response pairs (CRPs). Such primitives are desirable for applications such as communication and intellectual property protection. PUFs have been gaining considerable interest from both the academic and industrial communities because of their simplicity and stability. However, many recent studies have exposed PUFs to machine-learning (ML) modeling attacks. To improve the resilience of a system to general ML attacks instead of a specific ML technique, a common solution is to improve the complexity of the system. Structures, such as XOR-PUFs, can significantly increase the nonlinearity …


Real-Time Spatial Interference Removal And Maximum Ratio Combining In Communication Systems, Adam Gary Whipple Aug 2023

Real-Time Spatial Interference Removal And Maximum Ratio Combining In Communication Systems, Adam Gary Whipple

Theses and Dissertations

Radio frequency interference (RFI) is undesired and commonplace. Using a subspace projection method to spatially remove the interference from a phased array system gives results of a 30 dB interference null rejection (INR). Unmanned systems have been developed to observe underwater activity and communicate their observations to passing aircraft. These systems are currently limited by their use of a single transmitter. The uplink can be improved by using a dual-antenna beam steering approach to maximize the signal-to-noise ratio (SNR) the aircraft receives. This approach demonstrates an increase in SNR of 3 dB when compared to a single transmitter.


3rd Party Ip Encryption From Netlist To Bitstream For Xilinx 7-Series Fpgas, Daniel Hutchings Aug 2023

3rd Party Ip Encryption From Netlist To Bitstream For Xilinx 7-Series Fpgas, Daniel Hutchings

Theses and Dissertations

IP vendors need to keep the internal designs of their IP secret from the IP user for security or commercial reasons. The CAD tools provided by FPGA vendors have some built-in functionality to encrypt the IP. However, the IP is consequently decrypted by the CAD tools in order to run the IP through the design flow. An IP user can use APIs provided by the CAD tools to recreate the IP in an unencrypted state. An IP user could also easily learn the internals of a protected IP with the advent of new open-source bitstream to netlist tools. The user …


Toward Automatically Composed Fpga-Optimized Robotic Systems Using High-Level Synthesis, Szu-Wei Lin Apr 2023

Toward Automatically Composed Fpga-Optimized Robotic Systems Using High-Level Synthesis, Szu-Wei Lin

Theses and Dissertations

Robotic systems are known to be computationally intensive. To improve performance, developers tend to implement custom robotic algorithms in hardware. However, a full robotic system typically consists of many interconnected algorithmic components that can easily max-out FPGA resources, thus requiring the designer to adjust each algorithm design for each new robotic systems in order to meet specific systems requirements and limited resources. Furthermore, manual development of digital circuitry using a hardware description language (HDL) such as verilog or VHDL, is error-prone, time consuming, and often takes months or years to develop and verify. Recent developments in high-level synthesis (HLS), enable …


Networked Digital Predictive Control For Modular Dc-Dc Converters, Castulo Aaron De La O Pérez Jul 2022

Networked Digital Predictive Control For Modular Dc-Dc Converters, Castulo Aaron De La O Pérez

Theses and Dissertations

The concept of power electronics building blocks (PEBB) has driven advancements in highly modularized converter systems with many identical subsystems. PEBBs are distributed subsets of converter systems and thus require communication with a control system for their coordination. For this type of system, the communication latency with hard deterministic deadlines is the driving attribute of communication system requirements. However, inherent communication requirements for PEBB-based converter systems also provide opportunities for coordination of energy flow.

Leveraging developments in Gigabit serial communication channels, a control and communication platform architecture for distributed control schemes based on the 2D-Torus communication network topology was developed …


Towards Trojan Detection From A Raw Bitstream, Corey Ryan Simpson Mar 2022

Towards Trojan Detection From A Raw Bitstream, Corey Ryan Simpson

Theses and Dissertations

Many avenues exist to insert malicious circuitry into an FPGA designs, including compromised CAD tools, overwriting bitstream files, and post-deployment attacks. The proprietary nature of the Xilinx bitstreams precludes the ability to validate an implemented design. This thesis introduces the BitRec and IPRec projects in an effort to support trojan detection tools. BitRec provides a novel approach to mapping of the Xilinx bitstream format into FPGA features in order to recreate the original design's netlist. BitRec supports the 7 Series, UltraScale and UltraScale+ architectures. IPRec then provides a novel approach to recognizing parameterizable IP within a flattened netlist in an …


Statistical Method For Extracting Radiation-Induced Multi-Cell Upsets And Anomalies In Sram-Based Fpgas, Juan Andres Perez Celis Nov 2021

Statistical Method For Extracting Radiation-Induced Multi-Cell Upsets And Anomalies In Sram-Based Fpgas, Juan Andres Perez Celis

Theses and Dissertations

FPGAs are susceptible to radiation-induced effects that change the data in the configuration memory. These effects can cause the malfunction of the system. Triple modular redundancy has extensively been used to improve the circuit's cross-section. However, TMR has shown to be particularly susceptible to radiation effects that affect more than one memory cell such as Multiple Cell Upsets (MCU) or micro-Single Event Functional Interrupts (micro-SEFI). This work describes a statistical technique to extract Multi-Cell Upset (MCU) and micro-SEFI events from raw radiation upset data. The technique uses Poisson statistics to identify patterns in the data. The most common patterns are …


Real Time Simulation And Hardware In The Loop Methods For Power Electronics Power Distribution Systems, Michele Difronzo Oct 2021

Real Time Simulation And Hardware In The Loop Methods For Power Electronics Power Distribution Systems, Michele Difronzo

Theses and Dissertations

System level testing of Power Electronics Power Distribution Systems (PEPDS) can be challenging when fine temporal resolution is required (time step below 100-200ns). In the recent years, our research group has proposed various methods to simulate in real-time PEPDS using FPGAs and time step as small as 50ns. While the proposed methods allow achieving the desired temporal resolution, they are extremely demanding in terms of resources usage and the size of the PEPDS that can be simulated on a single FPGA is strongly limited.

In this dissertation -work that takes as an example application the US Navy electric Ship Zonal …


Transparent Capacitive And Piezoelectric Micromachined Ultrasonic Transducers For Tactile Feedback With 3d Displays, Emily Anne Laughlin Aug 2021

Transparent Capacitive And Piezoelectric Micromachined Ultrasonic Transducers For Tactile Feedback With 3d Displays, Emily Anne Laughlin

Theses and Dissertations

3D display technology is limited by the user's ability to interact with displays without being connected to external equipment. In order to feel tactile feedback in conjunction with displays, ultrasonic sound pressure fields have been created; however, ceramic transducers interfere with the user's immersive experience. We have created transparent ultrasonic transducers using capacitive micromachined ultrasonic transducer (CMUT) and piezoelectric micromachined ultrasonic transducer (PMUT) technology that allow the user to remain immersed in the experience while interacting with the display. Individual transparent piezoelectric transducers made with indium tin oxide (ITO) and polyvinylidene fluoride (PVDF) generate 66.9dB with 91.6% transparency. Samples were …


High-Speed Image Classification For Resource-Limited Systems Using Binary Values, Taylor Scott Simons Jun 2021

High-Speed Image Classification For Resource-Limited Systems Using Binary Values, Taylor Scott Simons

Theses and Dissertations

Image classification is a memory- and compute-intensive task. It is difficult to implement high-speed image classification algorithms on resource-limited systems like FPGAs and embedded computers. Most image classification algorithms require many fixed- and/or floating-point operations and values. In this work, we explore the use of binary values to reduce the memory and compute requirements of image classification algorithms. Our objective was to implement these algorithms on resource-limited systems while maintaining comparable accuracy and high speeds. By implementing high-speed image classification algorithms on resource-limited systems like embedded computers, FPGAs, and ASICs, automated visual inspection can be performed on small low-powered systems. …


Turtle: A Fault Injection Platform For Sram-Based Fpgas, Corbin Alma Thurlow Jun 2021

Turtle: A Fault Injection Platform For Sram-Based Fpgas, Corbin Alma Thurlow

Theses and Dissertations

SRAM-Based FPGAs provide valuable computation resources and reconfigurability; however, FPGA designs can fail during operation due to ionizing radiation. As an SRAM-based device, these FPGAs store operation-critical information in configuration RAM, or CRAM. Testing, through radiation tests, can be performed to prove the effectiveness of SEU mitigation techniques by comparing the SEU sensitivity of an FPGA design with and without the mitigation techniques applied. However, radiation testing is expensive and time-consuming. Another method for SEU sensitivity testing is through fault injection. This work describes a low-cost fault injection platform for evaluating the SEU sensitivity of an SRAM-based FPGA design by …


Root Cause Analysis And Classification Of Single Point Failures In Designs Applying Triple Modular Redundancy In Sram Fpgas, James D. Swift Dec 2020

Root Cause Analysis And Classification Of Single Point Failures In Designs Applying Triple Modular Redundancy In Sram Fpgas, James D. Swift

Theses and Dissertations

Radiation effects encountered in space or aviation environments can affect the configuration bits in Field Programmable Gate Arrays (FPGA) causing errors in FPGA output. One method of increasing FPGA reliability in radiation environments includes adding redundant logic to mask errors and allow time for repair. Despite the redundancy added with triple modular redundancy (TMR) and configuration scrubbing there exist some configuration bits that individually affect multiple TMR domains causing errors in FPGA output. A new tool called DeBit is introduced that identifies hardware resources associated with a single bit failure. This tool identifies a novel failure mode involving global routing …


Compiler-Based Tools To Aid In Data Transfer Optimization And On-Chip Debug Of Heterogeneous Compute Systems, Matthew B. Ashcraft Jul 2020

Compiler-Based Tools To Aid In Data Transfer Optimization And On-Chip Debug Of Heterogeneous Compute Systems, Matthew B. Ashcraft

Theses and Dissertations

First, we present techniques to efficiently schedule data transfers through compiler analyses. Compared to transferring data immediately before and after the kernel executes, our scheduling results in orders of magnitude improvements in execution time, number of data transfers, and number of bytes transferred. Second, we demonstrate techniques to provide on-chip debugging for heterogeneous systems through recording execution on the software in addition to debugging circuitry in the hardware, and provide a temporal correlation between the hardware and software traces through synchronization. This allows us to follow debug data between the hardware and software trace buffers. Due to the added cost …


Evaluating And Improving The Seu Reliability Of Artificial Neural Networks Implemented In Sram-Based Fpgas With Tmr, Brittany Michelle Wilson Jun 2020

Evaluating And Improving The Seu Reliability Of Artificial Neural Networks Implemented In Sram-Based Fpgas With Tmr, Brittany Michelle Wilson

Theses and Dissertations

Artificial neural networks (ANNs) are used in many types of computing applications. Traditionally, ANNs have been implemented in software, executing on CPUs and even GPUs, which capitalize on the parallelizable nature of ANNs. More recently, FPGAs have become a target platform for ANN implementations due to their relatively low cost, low power, and flexibility. Some safety-critical applications could benefit from ANNs, but these applications require a certain level of reliability. SRAM-based FPGAs are sensitive to single-event upsets (SEUs), which can lead to faults and errors in execution. However there are techniques that can mask such SEUs and thereby improve the …


Dynamic Reconfigurable Real-Time Video Processing Pipelines On Sram-Based Fpgas, Andrew Elbert Wilson Jun 2020

Dynamic Reconfigurable Real-Time Video Processing Pipelines On Sram-Based Fpgas, Andrew Elbert Wilson

Theses and Dissertations

For applications such as live video processing, there is a high demand for high performance and low latency solutions. The configurable logic in FPGAs allows for custom hardware to be tailored to a specific video application. These FPGA designs require technical expertise and lengthy implementation times by vendor tools for each unique solution. This thesis presents a dynamically configurable topology as an FPGA overlay to deploy custom hardware processing pipelines during run-time by utilizing dynamic partial reconfiguration. Within the FPGA overlay, a configurable topology with a routable switch allows video streams to be copied and mixed to create complex data …


Distributed Memory Based Fpga Debug, Robert Benjamin Hale Apr 2020

Distributed Memory Based Fpga Debug, Robert Benjamin Hale

Theses and Dissertations

Field-programmable gate arrays (FPGAs) are powerful integrated circuits for low-overhead custom computing needs and design prototyping. Due to the hardware nature of programming an FPGA, finding bugs in a design can be a very challenging process. Signals need to be physically probed and data recorded in real time. This is often done by dedicating some resources on the FPGA itself towards an embedded logic analyzer. This method is effective but can be time and resource consuming. Academic research projects have produced a variety of methods for reducing this difficulty. One option that has previously been unexplored is the use of …


An Overlay Architecture For Pattern Matching, Rasha Elham Karakchi Apr 2020

An Overlay Architecture For Pattern Matching, Rasha Elham Karakchi

Theses and Dissertations

Deterministic and Non-deterministic Finite Automata (DFA and NFA) comprise the fundamental unit of work for many emerging big data applications, motivating recent efforts to develop Domain-Specific Architectures (DSAs) to exploit fine-grain parallelism available in automata workloads.

This dissertation presents NAPOLY (Non-Deterministic Automata Processor Over- LaY), an overlay architecture and associated software that attempt to maximally exploit on-chip memory parallelism for NFA evaluation. In order to avoid an upper bound in NFA size that commonly affects prior efforts, NAPOLY is optimized for runtime reconfiguration, allowing for full reconfiguration in 10s of microseconds. NAPOLY is also parameterizable, allowing for offline generation of …


A Soft-Error Reliability Testing Platform For Fpga-Based Network Systems, Hayden Cole Rowberry Dec 2019

A Soft-Error Reliability Testing Platform For Fpga-Based Network Systems, Hayden Cole Rowberry

Theses and Dissertations

FPGAs are frequently used in network systems to provide the performance and flexibility that is required of modern computer networks while allowing network vendors to bring products to market quickly. Like all electronic devices, FPGAs are vulnerable to ionizing radiation which can cause applications operating on an FPGA to fail. These low-level failures can have a wide range of negative effects on the performance of a network system. As computer networks play a larger role in modern society, it becomes increasingly important that these soft errors are addressed in the design of network systems.This work presents a framework for testing …


Maverick: A Stand-Alone Cad Flow For Partially Reconfigurable Fpga Modules, Dallon Godfrey Glick Dec 2019

Maverick: A Stand-Alone Cad Flow For Partially Reconfigurable Fpga Modules, Dallon Godfrey Glick

Theses and Dissertations

Circuit designs for field-programmable gate arrays (FPGAs) are typically compiled by FPGA vendor tools, such as Xilinx's Vivado Design Suite. In recent years, partial reconfiguration (PR) has emerged as a popular technique that allows portions of an FPGA to be dynamically reconfigured after the complete device has been configured with an initial bitstream. However, the nature of current FPGA vendor tools limits further innovation and possible usage models of PR.This thesis presents Maverick, an open-source proof-of-concept computer-aided design (CAD) flow for generating reconfigurable modules (RMs) which target PR regions in FPGA designs. Maverick builds upon existing open source tools (Yosys, …


Adaptive-Hybrid Redundancy For Radiation Hardening, Nicolas S. Hamilton Sep 2019

Adaptive-Hybrid Redundancy For Radiation Hardening, Nicolas S. Hamilton

Theses and Dissertations

An Adaptive-Hybrid Redundancy (AHR) mitigation strategy is proposed to mitigate the effects of Single Event Upset (SEU) and Single Event Transient (SET) radiation effects. AHR is adaptive because it switches between Triple Modular Redundancy (TMR) and Temporal Software Redundancy (TSR). AHR is hybrid because it uses hardware and software redundancy. AHR is demonstrated to run faster than TSR and use less energy than TMR. Furthermore, AHR allows space vehicle designers, mission planners, and operators the flexibility to determine how much time is spent in TMR and TSR. TMR mode provides faster processing at the expense of greater energy usage. TSR …


Improving The Single Event Effect Response Of Triple Modular Redundancy On Sram Fpgas Through Placement And Routing, Matthew Joel Cannon Aug 2019

Improving The Single Event Effect Response Of Triple Modular Redundancy On Sram Fpgas Through Placement And Routing, Matthew Joel Cannon

Theses and Dissertations

Triple modular redundancy (TMR) with repair is commonly used to improve the reliability of systems. TMR is often employed for circuits implemented on field programmable gate arrays (FPGAs) to mitigate the radiation effects of single event upsets (SEUs). This has proven to be an effective technique by improving a circuit's sensitive cross-section by up to 100x. However, testing has shown that the improvement offered by TMR is limited by upsets in single configuration bits that cause TMR to fail.This work proposes a variety of mitigation techniques that improve the effectiveness of TMR on FPGAs. These mitigation techniques can alter the …


Optimization And Hardware Implementation Of Syba-An Efficient Feature Descriptor, Samuel Gaylin Fuller Jul 2019

Optimization And Hardware Implementation Of Syba-An Efficient Feature Descriptor, Samuel Gaylin Fuller

Theses and Dissertations

Feature detection, description and matching are crucial steps in many computer vision algorithms. These rely on feature descriptors to be able to match image features across sets of images. This paper discusses a hardware implementation and various optimizations of our lab's previous work on the SYnthetic BAsis feature descriptor (SYBA). Previous work has shown that SYBA can offer superior performance to other binary descriptors, such as BRIEF. This hardware implementation on an FPGA is a high throughput and low latency solution, which is critical for applications such as: high speed object detection and tracking, stereo vision, visual odometry, structure from …


Neutron Beam Testing Methodology And Results For A Complex Programmable Multiprocessor Soc, Jordan Daniel Anderson Mar 2019

Neutron Beam Testing Methodology And Results For A Complex Programmable Multiprocessor Soc, Jordan Daniel Anderson

Theses and Dissertations

The Xilinx Multiprocessor System-on-Chip (MPSoC) is a complex device that uses 16nm FinFET technology to combine multiple processors, a large amount of FPGA resources, and many I/O interfaces on a single chip die. These features make the MPSoC a high-performance and architecturally flexible device. The potential computing power makes the MPSoC ideal for many embedded applications including terrestrial and space applications. The MPSoC, however, does not have extensive radiation history as many other devices have. The extent of the effect that ionized particles may have on the MPSoC is not well established. To solve this problem, neutron radiation testing can …


Efficient Fpga Soc Processing Design For A Small Uav Radar, Luke Oliver Newmeyer Apr 2018

Efficient Fpga Soc Processing Design For A Small Uav Radar, Luke Oliver Newmeyer

Theses and Dissertations

Modern radar technology relies heavily on digital signal processing. As radar technology pushes the boundaries of miniaturization, computational systems must be developed to support the processing demand. One particular application for small radar technology is in modern drone systems. Many drone applications are currently inhibited by safety concerns of autonomous vehicles navigating shared airspace. Research in radar based Detect and Avoid (DAA) attempts to address these concerns by using radar to detect nearby aircraft and choosing an alternative flight path. Implementation of radar on small Unmanned Air Vehicles (UAV), however, requires a lightweight and power efficient design. Likewise, the radar …


Efficient Fpga Soc Processing Design For A Small Uav Radar, Luke Oliver Newmeyer Apr 2018

Efficient Fpga Soc Processing Design For A Small Uav Radar, Luke Oliver Newmeyer

Theses and Dissertations

Modern radar technology relies heavily on digital signal processing. As radar technology pushes the boundaries of miniaturization, computational systems must be developed to support the processing demand. One particular application for small radar technology is in modern drone systems. Many drone applications are currently inhibited by safety concerns of autonomous vehicles navigating shared airspace. Research in radar based Detect and Avoid (DAA) attempts to address these concerns by using radar to detect nearby aircraft and choosing an alternative flight path. Implementation of radar on small Unmanned Air Vehicles (UAV), however, requires a lightweight and power efficient design. Likewise, the radar …


Progressive Network Deployment, Performance, And Control With Software-Defined Networking, Daniel J. Casey Mar 2018

Progressive Network Deployment, Performance, And Control With Software-Defined Networking, Daniel J. Casey

Theses and Dissertations

The inflexible nature of traditional computer networks has led to tightly-integrated systems that are inherently difficult to manage and secure. New designs move low-level network control into software creating software-defined networks (SDN). Augmenting an existing network with these enhancements can be expensive and complex. This research investigates solutions to these problems. It is hypothesized that an add-on device, or "shim" could be used to make a traditional switch behave as an OpenFlow SDN switch while maintaining reasonable performance. A design prototype is found to cause approximately 1.5% reduction in throughput for one ow and less than double increase in latency, …


Towards Tools For Achieving Third-Party Ip Assurance, Sean Talbot Jensen Mar 2018

Towards Tools For Achieving Third-Party Ip Assurance, Sean Talbot Jensen

Theses and Dissertations

Intellectual Property (IP) is used to speed up the design process and save money. The use of IP and complex CAD tools reduce visibility into the design and what is actually happening during synthesis and implementation. All of the complexity makes it easier for an attacker to insert malicious logic or tamper with the design in ways that are difficult to detect. Not very much work has been done towards the creation of tools to facilitate the safe use of 3rd-party IP. This work presents Physical and Functional Assurance, two approaches that aim to accomplish this task through physically and …


A Flexible Fpga-Assisted Framework For Remote Attestation Of Internet Connected Embedded Devices, Jared Russell Patten Mar 2018

A Flexible Fpga-Assisted Framework For Remote Attestation Of Internet Connected Embedded Devices, Jared Russell Patten

Theses and Dissertations

Embedded devices permeate our every day lives. They exist in our vehicles, traffic lights, medical equipment, and infrastructure controls. In many cases, improper functionality of these devices can present a physical danger to their users, data or financial loss, etc. Improper functionality can be a result of software or hardware bugs, but now more than ever, is often the result of malicious compromise and tampering, or as it is known colloquially "hacking". We are beginning to witness a proliferation of cyber-crime, and as more devices are built with internet connectivity (in the so called "Internet of Things"), security should be …