Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Analysis Of 3d Cone-Beam Ct Image Reconstruction Performance On A Fpga, Devin Held Dec 2016

Analysis Of 3d Cone-Beam Ct Image Reconstruction Performance On A Fpga, Devin Held

Electronic Thesis and Dissertation Repository

Efficient and accurate tomographic image reconstruction has been an intensive topic of research due to the increasing everyday usage in areas such as radiology, biology, and materials science. Computed tomography (CT) scans are used to analyze internal structures through capture of x-ray images. Cone-beam CT scans project a cone-shaped x-ray to capture 2D image data from a single focal point, rotating around the object. CT scans are prone to multiple artifacts, including motion blur, streaks, and pixel irregularities, therefore must be run through image reconstruction software to reduce visual artifacts. The most common algorithm used is the Feldkamp, Davis, and …


Controlling And Processing Core For Wireless Implantable Telemetry System, Naeeme Modir Oct 2016

Controlling And Processing Core For Wireless Implantable Telemetry System, Naeeme Modir

Electronic Thesis and Dissertation Repository

Wireless implantable telemetry systems are suitable choices for monitoring various physiological parameters such as blood pressure and volume. These systems typically compose of an internal device implanted into a living body captures the physiological data and sends them to an external base station located outside of the body for further processing. The internal device usually consists of a sensor interface to convert the collected data to electrical signals; a digital core to digitize the analog signals, process them and prepare them for transmission; an RF front-end to transmit the data outside the body and to receive the required commands from …


Design And Evaluation Of Fpga-Based Hybrid Physically Unclonable Functions, Sasan Khoshroo May 2013

Design And Evaluation Of Fpga-Based Hybrid Physically Unclonable Functions, Sasan Khoshroo

Electronic Thesis and Dissertation Repository

A Physically Unclonable Function (PUF) is a new and promising approach to provide security for physical systems and to address the problems associated with traditional approaches. One of the most important performance metrics of a PUF is the randomness of its generated response, which is presented via uniqueness, uniformity, and bit-aliasing. In this study, we implement three known PUF schemes on an FPGA platform, namely SR Latch PUF, Basic RO PUF, and Anderson PUF. We then perform a thorough statistical analysis on their performance. In addition, we propose the idea of the Hybrid PUF structure in which two (or more) …


Investigation On The Benefits Of Safety Margin Improvement In Candu Nuclear Power Plant Using An Fpga-Based Shutdown System, Jingke She Mar 2012

Investigation On The Benefits Of Safety Margin Improvement In Candu Nuclear Power Plant Using An Fpga-Based Shutdown System, Jingke She

Electronic Thesis and Dissertation Repository

The relationship between response time and safety margin of CANadian Deuterium Uranium (CANDU) nuclear power plant (NPP) is investigated in this thesis. Implementation of safety shutdown system using Field Programmable Gate Array (FPGA) is explored. The fast data processing capability of FPGAs shortens the response time of CANDU shutdown systems (SDS) such that the impact of accident transient can be reduced. The safety margin, which is closely related to the reactor behavior in the event of an accident, is improved as a result of such a faster shutdown process.

Theoretical analysis based on neutron dynamic theory is carried out to …