Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Impact Of Induced Defects On Rotor Life Assessment, Ashley Winfield Whitney-Rawls Jan 2010

Impact Of Induced Defects On Rotor Life Assessment, Ashley Winfield Whitney-Rawls

Browse all Theses and Dissertations

There is an economic need to reduce the conservatisms of current lifing methods and extend component life. Extending component usage increases the probability of failure during operation. Therefore, the risk of continued service must be quantified before life extension concepts can successfully be implemented. The current FAA approved software for the certification of new rotor designs, only accounts for defects present prior to service. Defects due to the handling of components during inspection and material fatigue will induce defects during service and need to be included in any analysis of component life extension. Component life extension analysis of an Inconel …


Fabrication And Analysis Of Compositionally Graded Functional Layers For Solid Oxide Fuel Cells, Jared Ray Mccoppin Jan 2010

Fabrication And Analysis Of Compositionally Graded Functional Layers For Solid Oxide Fuel Cells, Jared Ray Mccoppin

Browse all Theses and Dissertations

Solid Oxide Fuel Cell (SOFC) structures must be optimized for high performance, increased life, and low cost. Fabrication methods are an area of research interest in bringing down the total cost of SOFCs, and can also impact cell life and performance. Graded functional layers have been shown to enhance cell performance, but current fabrication methods require multiple fabrication steps. This thesis describes a novel fabrication method capable of compositional gradation of functional layers for SOFCs. Using colloidal spray deposition technology, a controlled co-deposition strategy was utilized to fabricate SOFC's with compositionally graded cathode and anode functional layers (CGCFL/CGAFL). In this …


Stochastic Mistuning Simulation Of Integrally Bladed Rotors Using Nominal And Non-Nominal Component Mode Synthesis Methods, Joseph A. Beck Jan 2010

Stochastic Mistuning Simulation Of Integrally Bladed Rotors Using Nominal And Non-Nominal Component Mode Synthesis Methods, Joseph A. Beck

Browse all Theses and Dissertations

Mistuning prediction in integrally bladed rotors is often done with reduced order models that minimize computational expenses. A common model reduction technique used for mistuning applications is the component mode synthesis method. In this work, two modern component mode synthesis methods are used to generate mistuned response distributions that will be used to determine if the two methods are statistically indistinguishable. The first method, nominal mode approximation, assumes an airfoil geometric perturbation alters only the corresponding substructure modal stiffnesses while its mode shapes remain unaffected. The mistuned response is then predicted by a summation of the nominal modes. The second …


Experimental Studies Of Turbulent Boundary Layers Over A Rough Forward-Facing Step And Its Coarse Scale Resolution Approximations, Huiying Ren Jan 2010

Experimental Studies Of Turbulent Boundary Layers Over A Rough Forward-Facing Step And Its Coarse Scale Resolution Approximations, Huiying Ren

Browse all Theses and Dissertations

High spatial resolution PIV experiments are performed in the x-y plane at two different spanwise positions to compare the turbulent boundary layers over smooth and rough forward-facing-steps as well as the rough step's two coarse scale-resolution approximations. The Reynolds number based on the step's mean height, Reh, is 3450 and the ratio of the boundary layer thickness to the step's height is δ/h = 8. The roughness topography on the top surface of the rough step is replicated from a realistic turbine blade and is intrinsically three-dimensional and highly irregular. The surface topographies of the coarse scale-resolution …


Ab Initio Simulations Of Hydrogen And Lithium Adsorption On Silicene, Tim H. Osborn Jan 2010

Ab Initio Simulations Of Hydrogen And Lithium Adsorption On Silicene, Tim H. Osborn

Browse all Theses and Dissertations

The energies and temperature-dependent dynamics of hydrogen and lithium chemisorption on a silicon nanosheet, called silicene, were studied using density functional theory and molecular-dynamics (MD) simulations. Silicene has a buckled honeycomb structure, and has been fabricated as suspended monolayer sheets and nanoribbons in recent experiments. We calculated the adsorption energies of hydrogen and lithium on silicene for different adsorption ratios between 3.1% and 100%. The studies will clarify the characteristics of these novel and promising nanomaterials, and pave the way for their applications.

For Hydrogen, the adsorption energy had a maximum of 3.01 eV/H for complete hydrogenation, and decreased by …


Characterization Of Internal Wake Generator At Low Reynolds Number With A Linear Cascade Of Low Pressure Turbine Blades, Chase A. Nessler Jan 2010

Characterization Of Internal Wake Generator At Low Reynolds Number With A Linear Cascade Of Low Pressure Turbine Blades, Chase A. Nessler

Browse all Theses and Dissertations

Unsteady flow and its effects on the boundary layer of a low pressure turbine blade is complex in nature. The flow encountered in a low pressure turbine contains unstructured free-stream turbulence, as well as structured periodic perturbations caused by upstream vane row wake shedding. Researchers have shown that these conditions strongly influence turbine blade performance and boundary layer separation, especially at low Reynolds numbers. In order to simulate these realistic engine conditions and to study the effects of periodic unsteadiness, a moving bar wake generator has been designed and characterized for use in the Air Force Research Labs low speed …


Sulfur-Tolerant Catalyst For The Solid Oxide Fuel Cell, Bozeman Joe Frank Iii Jan 2010

Sulfur-Tolerant Catalyst For The Solid Oxide Fuel Cell, Bozeman Joe Frank Iii

Browse all Theses and Dissertations

JP-8 fuel is easily accessible, transportable, and has hydrogen content essential to solid oxide fuel cell (SOFC) operation. However, this syngas has sulfur content which results in a poisonous hydrogen sulfide that degrades electrochemical activity and causes complete SOFC failure in some cases. The goal is to synthesize and verify a cost-effective, catalyst supported on cerium oxide that either stabilizes ionic conductivity in the presence of hydrogen sulfide and/or is highly sulfur-resistant. After thorough computational analysis, it was concluded that the platinum-copper skin catalyst was the most cost-effective, sulfur-resistant catalyst. Experimental synthesis of copper, platinum, and platinum-copper skin catalysts supported …


Effect Of Free-Edges On Melt Pool Geometry And Solidification Microstructure In Beam-Based Fabrication Methods, Joy Elizabeth Davis Jan 2010

Effect Of Free-Edges On Melt Pool Geometry And Solidification Microstructure In Beam-Based Fabrication Methods, Joy Elizabeth Davis

Browse all Theses and Dissertations

Laser and electron beam-based additive manufacturing of Ti-6Al-4V are under consideration for application to aerospace components. A critical concern for these processes is the ability to obtain a consistent and desirable microstructure and corresponding mechanical properties of the deposit. Based on the Rosenthal solution for a moving point-heat source, recent work has developed simulation-based process maps for the thermal conditions controlling microstructure (grain size and morphology) in beam-based deposition of semi-infinite geometries, where a steady-state melt pool exists away from free-edges. In the current study, the Rosenthal solution is modified to include the effects of free-edges. This is accomplished by …


A Critical Assessment Of The High Cycle Bending Fatigue Behavior Of Boron-Modified Ti-6al-4v, Casey M. Holycross Jan 2010

A Critical Assessment Of The High Cycle Bending Fatigue Behavior Of Boron-Modified Ti-6al-4v, Casey M. Holycross

Browse all Theses and Dissertations

Boron-modified Ti-6Al-4V alloys have shown increased performance in mechanical properties over unmodified alloys and are currently of interest for use in turbine engine applications. These alloys offer up to 40% increase in ultimate tensile strength, up to 30% increase in stiffness, and favorable damage characteristics while maintaining a ductility greater than 10%. These attractive properties are attributed to small additions of boron that refine the microstructure and form strong and stiff TiB whiskers. Previous research has found that these modified alloys compare favorably in fatigue. Samples machined from a powder-metallurgy forging with nominal composition Ti-6Al-4V-1B, were tested in fully-reversed bending …


Risk Quantification And Reliability Based Design Optimization In Reusable Launch Vehicles, Jason Maxwell King Jan 2010

Risk Quantification And Reliability Based Design Optimization In Reusable Launch Vehicles, Jason Maxwell King

Browse all Theses and Dissertations

Due to the inherent natural variability of parameters with reusable launch vehicles, design considerations without use of a reliability or safety index may be unreliable and vulnerable to vehicle failures. Generally in preliminary air vehicle design little information is known regarding design variable uncertainties, consequently requiring a technique that can quantify epistemic uncertainties. Evidence Theory is employed to accomplish this task resulting in a reliability bound of belief and plausibility. Due to the discontinuous nature of the belief and plausibility function it is necessary to implement a continuous function known as plausibility decision to be used to calculate sensitivities that …


Fabrication Of Zinc Oxide Thin Films For Renewable Energy And Sensor Applications, Theresa Y. Hill Jan 2010

Fabrication Of Zinc Oxide Thin Films For Renewable Energy And Sensor Applications, Theresa Y. Hill

Browse all Theses and Dissertations

Progress in commercializing renewable energy technologies is being advanced by developments in Zinc Oxide material science. The photovoltaic cell, for example, generates electricity by receiving solar energy into the cell, generating electrons, and simultaneously transporting electrical charge out of the cell. Metals are capable of removing electrical charge but block transmission of sunshine. Glass and plastics are capable of transmitting sunshine but block the removal of electrical charge. Therefore an exterior layer that is both optically transparent and electrically conductive is desirable. Transparent conductive oxides (TCOs) are the ideal material for such applications since they are capable of both functions. …


Aircraft Gearbox Dynamics Subject To Electromechanical Actuator Regenerative Energy Flow, Matthew S. Rutledge Jan 2010

Aircraft Gearbox Dynamics Subject To Electromechanical Actuator Regenerative Energy Flow, Matthew S. Rutledge

Browse all Theses and Dissertations

To increase reliability and efficiency, standard aircraft components are being replaced with more electric subsystems aimed to reduce weight, conserve space, and improve energy management. One application of this process replaces standard hydraulic actuators used in flap or aileron movements with electromechanical actuators powered by an external generator. During different types of return movements, the electromechanical actuator will produce regenerative power that flows back through the generator and pulses into the engine-gearbox subsystem. The regenerative power, defined by characteristic amplitude, frequency, and other pulse attributes, coupled with the driving force produced by the engine may dramatically impact the performance and …


Surface Modification Of Carbon Structures For Biological Applications, Elizabeth Irene Maurer Jan 2010

Surface Modification Of Carbon Structures For Biological Applications, Elizabeth Irene Maurer

Browse all Theses and Dissertations

Carbon substrates have a wide variety of applications, many of which are enabled by appropriate surface modifications. In particular, the use of carbon-based substrates for biological devices can be quite advantageous due to their relative inertness and biocompatibility. Moreover, graphitic carbon can take many forms ranging from flat sheets to foams, fibers, and nanotubes. In this project, larger carbon substrates such as microcellular foam and flat graphite have been modified with carbon nanotubes, and their potential use in two types of biological applications was tested. The first study involved an investigation of the growth and proliferation of osteoblast cells on …


Computational Study Of Direct Fuel Injection In The Rotax 914 Engine, Brad Pollock Jan 2010

Computational Study Of Direct Fuel Injection In The Rotax 914 Engine, Brad Pollock

Browse all Theses and Dissertations

Direct injection spark ignition (DISI) is a fuel delivery method in which the fuel is introduced directly into the combustion chamber of an internal combustion engine. Although direct fuel injection was first pioneered in the early 1920's, it has only recently become a reliable option due to advances made in control systems and injection technology. Direct injection enables increased fuel efficiency and higher power output than a conventional Port Fuel Injection (PFI) system. By delivering pressurized fuel directly into the cylinder, the degree of fuel atomization and the fuel vaporization rate are increased. Hence, the air/fuel mixture can be more …