Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Applied sciences

Graduate Theses and Dissertations

Physics

Articles 1 - 23 of 23

Full-Text Articles in Engineering

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Graduate Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear frequency …


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Graduate Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted …


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin Jan 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Graduate Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill Dec 2016

Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill

Graduate Theses and Dissertations

Colloidal lead selenide and lead selenide / lead sulfide core/shell nanocrystals were grown using a wet chemical synthesis procedure. Absorbance and photoluminescence measurements were made to verify the quality of the produced nanocrystals. Absorbance spectra were measured at room temperature, while photoluminescence spectra were measured at 77 K. Organic ligands were exchanged for shorter ligands in order to increase the conductivity of the nanocrystals. Absorption and PL spectra for both core and core/shell nanocrystals were compared. Interdigital photodetector devices with varying channel widths were fabricated by depositing gold onto a glass substrate. Lead selenide nanocrystals were deposited onto these metallic …


Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman Dec 2016

Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman

Graduate Theses and Dissertations

Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO …


Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu Aug 2016

Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu

Graduate Theses and Dissertations

A low-temperature photoluminescence (PL) study was conducted on low-temperature metal modulation epitaxy (MME) grown GaN. By comparing the PL signal from high temperature grown GaN buffer layers, and MME grown cap layers on top of the buffer layers, it was found that MME grown GaN cap has a significantly greater defect-related emission. The band edge PL from MME grown GaN found to be 3.51eV at low temperature. The binding energy of the exciton in GaN is determined to be 21meV through temperature dependence analysis. A PL peak at 3.29eV was found in the luminescence of the MME grown cap layer, …


Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh Aug 2016

Study Of Plasmonic Properties Of The Gold Nanorods In The Visible To Near Infrared Light Regime, Pijush Kanti Ghosh

Graduate Theses and Dissertations

Nanostructures of noble metals show unique plasmonic behavior in the visible to near-infrared light range. Gold nanostructures exhibit a particularly strong plasmonic response for these wavelengths of light. In this study we have investigated optical enhancement and absorption of gold nanorods with different thickness using finite element method simulations. This study reports on the resonance wavelength of the sharp-corner and round-corner rectangles of constant length 100 nm and width 60 nm. The result shows that resonance wavelength depends on the polarization of the incident light; there also exists a strong dependence of the optical enhancement and absorption on the thickness …


Experimental And Computational Studies Of Cortical Neural Network Properties Through Signal Processing, Wesley Patrick Clawson May 2016

Experimental And Computational Studies Of Cortical Neural Network Properties Through Signal Processing, Wesley Patrick Clawson

Graduate Theses and Dissertations

Previous studies, both theoretical and experimental, of network level dynamics in the cerebral cortex show evidence for a statistical phenomenon called criticality; a phenomenon originally studied in the context of phase transitions in physical systems and that is associated with favorable information processing in the context of the brain. The focus of this thesis is to expand upon past results with new experimentation and modeling to show a relationship between criticality and the ability to detect and discriminate sensory input. A line of theoretical work predicts maximal sensory discrimination as a functional benefit of criticality, which can then be characterized …


The Effects Of Strain And Vacancies On The Electric And Vibrational Properties Of Ferroelectric Batio3 From First-Principles, Aldo Serge Michael Raeliarijaona Jul 2015

The Effects Of Strain And Vacancies On The Electric And Vibrational Properties Of Ferroelectric Batio3 From First-Principles, Aldo Serge Michael Raeliarijaona

Graduate Theses and Dissertations

The studies of ferroelectricity (FE) are of technological significance because of the multitude of applicable properties that ferroelectric materials exhibit. The mastery, and control of these properties necessitate the knowledge of the fundamental physics governing these insulating materials.

In this dissertation I present the results of first-principles investigations of the behavior of the fundamental ferroelectric properties under strain, and in the presence of vacancies. In the first part I introduce the important FE properties, their common behavior, and their numerous valuable applications. Following this background on FEs, a review of theoretical methods is presented with topics such as: Density Functional …


Engineering The Ground State Of Complex Oxides, Derek Joseph Meyers Jul 2015

Engineering The Ground State Of Complex Oxides, Derek Joseph Meyers

Graduate Theses and Dissertations

Transition metal oxides featuring strong electron-electron interactions have been at the forefront of condensed matter physics research in the past few decades due to the myriad of novel and exciting phases derived from their competing interactions. Beyond their numerous intriguing properties displayed in the bulk they have also shown to be quite susceptible to externally applied perturbation in various forms. The dominant theme of this work is the exploration of three emerging methods for engineering the ground states of these materials to access both their applicability and their deficiencies.

The first of the three methods involves a relatively new set …


Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari May 2015

Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari

Graduate Theses and Dissertations

There has been a growing interest in using low cost material as a substrate for the large grained polycrystalline silicon photovoltaic devices. The main property of those devices is the potential of obtaining high efficiency similar to crystalline Si devices efficiency yet at much lower cost because of the thin film techniques. Epitaxial growth of Si at low temperatures on low cost large grained seed layers, prepared by aluminum induced crystallization method (AIC), using hot wire chemical vapor deposition (HWCVD) system is investigated in this thesis. In this work, different parameters have been studied in order to optimize the growth …


Structural Properties Of Ferroelectric Lead (Zirconium0.5,Titanium0.5)Oxygen3 Nanotube Array And Electronic Structure Of Lao Delta-Doped Strontium Titanate, Rajendra Prasad Adhikari Aug 2013

Structural Properties Of Ferroelectric Lead (Zirconium0.5,Titanium0.5)Oxygen3 Nanotube Array And Electronic Structure Of Lao Delta-Doped Strontium Titanate, Rajendra Prasad Adhikari

Graduate Theses and Dissertations

In this Dissertation we begin with two introductions on: 1) ferroelectricity and related phenomena, and 2) novel properties of Oxide electronics and the generation of two dimensional electron gas. We then give theoretical background of density functional theory (including LDA+U) and pseudopotentials. The first part of research work is about structural, polarization, and dielectric properties of ferroelectric Lead Zirconate Titanate (PZT) solid solution in the form of a nanotube array, embedded in a matrix medium of different ferroelectric strengths. We use the effective Hamiltonian derived from first-principles and finite-temperature Monte Carlo methods to determine the various properties. We revealed different …


The Geometry And Sensitivity Of Ion-Beam Sculpted Nanopores For Single Molecule Dna Analysis, Ryan Connor Rollings May 2013

The Geometry And Sensitivity Of Ion-Beam Sculpted Nanopores For Single Molecule Dna Analysis, Ryan Connor Rollings

Graduate Theses and Dissertations

In this dissertation, the relationship between the geometry of ion-beam sculpted solid-state nanopores and their ability to analyze single DNA molecules using resistive pulse sensing is investigated. To accomplish this, the three dimensional shape of the nanopore is determined using energy filtered and tomographic transmission electron microscopy. It is shown that this information enables the prediction of the ionic current passing through a voltage biased nanopore and improves the prediction of the magnitude of current drop signals when the nanopore interacts with single DNA molecules. The dimensional stability of nanopores in solution is monitored using this information and is improved …


Directed Percolation And The Abstract Tile Assembly Model, Tyler Garrett Moore May 2013

Directed Percolation And The Abstract Tile Assembly Model, Tyler Garrett Moore

Graduate Theses and Dissertations

Self-assembly is a process by which simple components build complex structures through local interactions. Directed percolation is a statistical physical model for describing competitive spreading processes on lattices. The author describes an algorithm which can transform a tile assembly system in the abstract Tile Assembly Model into a directed percolation problem, and then shows simulations of the aTAM which support this algorithm. The author also investigates two new constructs designed for Erik Winfree's abstract Tile Assembly Model called the NULL tile and temperature 1.5. These constructs aid the translation between self-assembly and directed percolation and may assist self-assembly researchers in …


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Graduate Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon …


Design And Fabrication Of Nanofluidic Systems With Integrated Sensing Electrodes For Rapid Biomolecule Characterization, Taylor Bradley Busch May 2013

Design And Fabrication Of Nanofluidic Systems With Integrated Sensing Electrodes For Rapid Biomolecule Characterization, Taylor Bradley Busch

Graduate Theses and Dissertations

A transparent nanofluidic system with embedded sensing electrodes was designed and fabricated by integrating Atomic Force Microscopy (AFM) nanolithography, Focused Ion Beam (FIB) milling and metal deposition, and standard microfabrication processing. The fabrication process started with the evaporation of chrome/gold (Cr/Au) onto a Pyrex 7740 wafer followed by photolithography and wet etching of the microchannels. The wafer was patterned a second time to form Au microelectrodes with 15-45 micrometer separation gaps in the nanochannel region. Sensing electrodes (up to one micron wide) were then deposited using FIB to bridge the gaps. The nanochannels were realized through both AFM nanolithography and …


Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji Dec 2012

Plasmonic And Photonic Designs For Light Trapping In Thin Film Solar Cells, Liming Ji

Graduate Theses and Dissertations

Thin film solar cells are promising to realize cheap solar energy. Compared to conventional wafer cells, they can reduce the use of semiconductor material by 90%. The efficiency of thin film solar cells, however, is limited due to insufficient light absorption. Sufficient light absorption at the bandgap of semiconductor requires a light path more than 10x the thickness of the semiconductor. Advanced designs for light trapping are necessary for solar cells to absorb sufficient light within a limited volume of semiconductor. The goal is to convert the incident light into a trapped mode in the semiconductor layer.

In this dissertation, …


Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer Dec 2012

Pulse Sharpening Effects Of Thin Film Ferroelectric Transmission Lines, Robert J. Sleezer

Graduate Theses and Dissertations

Advances in material science have resulted in the development of electrically nonlinear high dielectric thin film ferroelectrics, which have led to new opportunities for the creation of novel devices. This dissertation investigated one such device: a low voltage nonlinear transmission line (NLTL). A finite element simulation of ferroelectric transmission lines showed that NLTLs are capable of creating shockwaves. Additionally, if the losses are kept sufficiently low, it was shown that voltage gain should be possible. Furthermore, a method of accounting for material dispersion was developed. Results from simulations including material dispersion showed that temporal solitons might be possible from a …


Dynamical Properties Of Ferroelectric Perovskites (Ba,Sr)Tio3 And Pb(Zr,Ti)O3 Systems From First Principles, Jeevaka Weerasinghe Aug 2012

Dynamical Properties Of Ferroelectric Perovskites (Ba,Sr)Tio3 And Pb(Zr,Ti)O3 Systems From First Principles, Jeevaka Weerasinghe

Graduate Theses and Dissertations

A first-principles-based effective Hamiltonian scheme which incorporates coupling between ferroelectric (FE) and antiferrodistortive (AFD) motions is applied to Pb(Zr,Ti)O3 alloys. It validates the existence of two modes of E symmetry (rather than the single E(1TO) soft mode) in the 50-75 cm-1 range for temperatures smaller than 200 K and for compositions falling within the Rhombohedral R3c phase. Coupling between long-range-ordered FE and AFD motions is shown to be the cause of the additional mode and more insight into its nature is provided. This scheme is further used to reveal a field-induced anticrossing involving FE and AFD degrees of …


Mott Transition And Electronic Structure In Complex Oxide Heterostructures, Jian Liu May 2012

Mott Transition And Electronic Structure In Complex Oxide Heterostructures, Jian Liu

Graduate Theses and Dissertations

Strongly correlated electron systems, particularly transition metal oxides, have been a focus of condensed matter physics for more than two decades since the discovery of high-temperature superconducting cuprates. Diverse competing phases emerge, spanning from exotic magnetism to unconventional superconductivity, in proximity to the localized-itinerant transition of Mott insulators. While studies were concentrated on bulk crystals, the recent rapid advance in synthesis has enabled fabrication of high-quality oxide heterostructures, offering a new route to create novel artificial quantum materials.

This dissertation details the investigation on ultrathin films and heterostructures of 3d7(t2g6eg1) systems with …


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Graduate Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths. …


Investigation Of Negative Differential Resistance Phenomena In Quantum Well Heterostructures, Nazariy Andrushchak May 2012

Investigation Of Negative Differential Resistance Phenomena In Quantum Well Heterostructures, Nazariy Andrushchak

Graduate Theses and Dissertations

Increasing interest in entirely new possibilities for quantum mechanical description of carriers transport is becoming more evident with the developing advancements in epitaxial growth technique. Consequently, molecular beam epitaxy (MBE) technique is considered to be the most precise technique that allows the growth of ultra-thin layers of different compositions.

Those structures can be designed to investigate the wave-nature of carriers, which broadens the possibilities in device design and fabrication for a specific area. In this thesis the fundamental study of the real space charge transfer (RST) mechanism that took place in quantum well heterostructures and led to the negative differential …