Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 336

Full-Text Articles in Engineering

Trihalomethane, Dihaloacetonitrile, And Total N-Nitrosamine Precursor Adsorption By Carbon Nanotubes: The Importance Of Surface Oxides And Pore Volume, Erin Needham May 2017

Trihalomethane, Dihaloacetonitrile, And Total N-Nitrosamine Precursor Adsorption By Carbon Nanotubes: The Importance Of Surface Oxides And Pore Volume, Erin Needham

Graduate Theses and Dissertations

As drinking water sources become increasingly impaired, enhanced removal of natural organic matter (NOM) may be required to curb formation of disinfection byproducts (DBPs) upon chlor(am)ination. While carbon nanotubes (CNTs) can adsorb NOM, their properties for DBP precursor adsorption have not been elucidated. Nine types of CNTs were assessed for trihalomethane (THM), dihaloacetonitrile (DHAN), and total N-nitrosamine (TONO) precursor adsorption. Batch isotherm experiments were completed with lake water and, to simulate an impaired condition, effluent from a wastewater treatment plant (WWTP). Adsorption varied with CNT type and dose, with TONO precursors having the highest percent removals from WWTP effluent (up …


Effect Of Column Axial Load On Skewed Smf Rbs Connection Demands, Clovis Desrochers May 2017

Effect Of Column Axial Load On Skewed Smf Rbs Connection Demands, Clovis Desrochers

Graduate Theses and Dissertations

Steel buildings in high seismic areas often require special structural systems to transfer large lateral forces induced by earthquake accelerations. The selection of an appropriate seismic steel system (braced frame, moment frame, shear wall, etc.) is often influenced by architectural considerations. Moment frame configurations offer the most architectural flexibility, but are limited by code prequalification requirements that limit the use of non-orthogonal (skewed) beam-column connection geometries. A recent study has investigated laterally skewed moment frame connections, indicating that skew increases the potential for column twist and column flange yielding; however, it is unclear how realistic column axial loads will affect …


Development Of A Multiband Remote Sensing System For Determination Of Unsaturated Soil Properties, Cyrus D. Garner May 2017

Development Of A Multiband Remote Sensing System For Determination Of Unsaturated Soil Properties, Cyrus D. Garner

Graduate Theses and Dissertations

A multiband system including active microwave sensing and visible-near infrared reflectance spectroscopy was developed to measure unsaturated soil properties in both field and laboratory environments. Remote measurements of soil volumetric water content (θv), soil water matric potential (ψ), and soil index properties (liquid limit [LL], plastic limit [PL], and clay fraction [CF]) were conducted. Field-based measurement of θv was conducted using a ground-based radar system and field measurements within 10 percentage points of measurements acquired with traditional sampling techniques were obtained. Laboratory-based, visible and near infrared spectroscopy was found to be capable of obtaining empirical, soil specific regression functions (partial …


A Comparison Of Force And Pressure Coefficients On Dome, Cube And Prism Shaped Buildings Due To Straight And Tornadic Wind Using Three Dimensional Computational Fluids Dynamics, Majdi A. A. Yousef May 2017

A Comparison Of Force And Pressure Coefficients On Dome, Cube And Prism Shaped Buildings Due To Straight And Tornadic Wind Using Three Dimensional Computational Fluids Dynamics, Majdi A. A. Yousef

Graduate Theses and Dissertations

Tornadoes induce very different wind forces than a straight-line (SL) wind. A suitably designed building for a SL wind may fail when exposed to a tornado-wind of the same wind speed. It is necessary to design buildings that are more resistant to tornadoes. Most studies have been conducted to investigate tornado forces on cubic, gable-roof and cylinder buildings. However, little attention has been paid to investigate tornado force on dome buildings; hence, further research is conducted in this study. The forces on a dome, cube and prisms were analyzed and compared using Computational Fluid Dynamics (CFD) for tornadic and SL …


Understanding N-Nitrosodimethylamine Formation In Water: Chloramine Chemistry, Kinetics, And A Proposed Reaction Pathway, Huong Thu Pham May 2017

Understanding N-Nitrosodimethylamine Formation In Water: Chloramine Chemistry, Kinetics, And A Proposed Reaction Pathway, Huong Thu Pham

Graduate Theses and Dissertations

The formation of N-nitrosodimethylamine (NDMA) in drinking water systems is a concern because of its potential carcinogenicity and occurrence at toxicologically relevant levels. The postulated mechanism for NDMA formation involves a substitution between dichloramine and amine-based precursors to form an unsymmetrical dimethylhydrazine (UDMH), which is then oxidized by ground-state molecular oxygen to form NDMA. However, this latter reaction is spin forbidden, thus likely occurs at a slow rate. It is hypothesized that the reaction between monochloramine and hydroxylamine (a nitrification product) may form an intermediate, which is involved in the NDMA formation pathway. This intermediate may also be generated from …


Computer Simulation Of Pore Migration Due To Temperature Gradients In Nuclear Oxide Fuel, Ian Wayne Vance May 2017

Computer Simulation Of Pore Migration Due To Temperature Gradients In Nuclear Oxide Fuel, Ian Wayne Vance

Graduate Theses and Dissertations

A phase-field simulation model is being presented that captures the thermal-gradient-driven migration of pores in oxide fuel associated with fuel restructuring. The model utilizes a Cahn-Hilliard equation supplemented with an advection term to describe the vapor transport of fuel material through the pore interior due to gradients in vapor pressure. In addition, the model also captures changes in a migrating pores’ morphology. Simulations demonstrate that the model successfully predicts pore migration towards the hottest portion of the fuel, the centerline. The simulations also demonstrate changes in pore shape that are in agreement with previous experimental observations. Initially isotropic pores are …


Exploring Compaction Effects On Cold In-Place Recycling Mixtures Using Emulsified Asphalt, Erica Ann Yeung May 2017

Exploring Compaction Effects On Cold In-Place Recycling Mixtures Using Emulsified Asphalt, Erica Ann Yeung

Graduate Theses and Dissertations

Cold in-place recycling (CIR) is a process that takes three to four inches of existing pavement surface and reuses 100% of it by milling and crushing it, adding asphalt emulsions and/or additives to it, before placing and re-compacting it. There is currently very little research regarding the interaction between the crushed aggregate and asphalt emulsion during the CIR process. In this study, the interactions between the combinations of crushed aggregates and asphalt emulsions were investigated along with select compaction metrics and a raveling performance test. The three types of aggregates included coated limestone, recycled asphalt pavement (RAP), and coated syenite. …


Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani May 2017

Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani

Graduate Theses and Dissertations

The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, <100>, <110>, <111> and <321>, and dislocation density behind the shock wave …


Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Graduate Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear frequency …


Service Consistency In Vehicle Routing, Kunlei Lian May 2017

Service Consistency In Vehicle Routing, Kunlei Lian

Graduate Theses and Dissertations

This thesis studies service consistency in the context of multi-period vehicle routing problems (VRP) in which customers require repeatable services over a planning horizon of multiple days. Two types of service consistency are considered, namely, driver consistency and time consistency. Driver consistency refers to using the fewest number of different drivers to perform all of the visits required by a customer over a planning horizon and time consistency refers to visiting a customer at roughly the same time on each day he/she needs service. First, the multi-objective consistent VRP is defined to explore the trade-offs between the objectives of travel …


Silicon Germanium Bicmos Comparator Designed For Use In An Extreme Environment Analog To Digital Converter, Benjamin Riley Sissons May 2017

Silicon Germanium Bicmos Comparator Designed For Use In An Extreme Environment Analog To Digital Converter, Benjamin Riley Sissons

Graduate Theses and Dissertations

This thesis demonstrates the process of creating a radiation hardened and extreme temperature operating comparator from start to finish in the 90 nm SiGe 9HP process node. This includes the entire design flow from examining comparator topologies, to designing the initial comparator circuits, to simulating the comparator over a temperature range of -196°C to 125°C, and finally the testing of the fabricated circuit. To verify the circuit would work at low temperatures, several new device models were created that could be used for simulations at -196°C. In addition to its properties as a standalone comparator, the circuit was also used …


Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii May 2017

Characterization Of Coupled Gold Nanoparticles In A Sparsely Populated Square Lattice, Roy Truett French Iii

Graduate Theses and Dissertations

Metal nanoparticles deposited in regular arrays spaced at optical wavelengths support a resonance due to a coherent coupling between localized surface plasmon mode and lattice diffraction allowing for engineering of tunable devices for use in biological sensors, nanoantennae, and enhanced spectroscopy. Techniques such as electron beam lithography, focused ion beam lithography, nanosphere lithography, and nanoimprint lithography are used for fabrication but are limited by cost, device throughput, and small deposition. Polymer soft lithography and continuous dewetting of particles is a potentially viable alternative showing promise in all of those areas. This thesis developed the fabrication of a refined hydrophilic nanoimprinted …


Morphology Controlled Synthesis Of Copper Based Multimetallic Nanostructures And Their Electrocatalytic Properties For Methanol Oxidation Reaction, Leanne Elizabeth Mathurin May 2017

Morphology Controlled Synthesis Of Copper Based Multimetallic Nanostructures And Their Electrocatalytic Properties For Methanol Oxidation Reaction, Leanne Elizabeth Mathurin

Graduate Theses and Dissertations

This research focuses on the development of shape-controlled synthesis of Cu NM, Cu-based bimetallic and trimetallic nanostructures, and their electrocatalytic properties for methanol oxidation reaction (MOR). Copper nanomaterials (Cu NM) with specific surface facets can tailor their catalytic activity. Understanding reagents responsible for Cu NM growth is important for morphology-controlled synthesis of the nanostructures. This research studies the halide influence on Cu NM growth and morphology in an oil-based synthesis. The morphology of the Cu NM varies with the halide type (i.e., Cl-, Br-, I-), and the halide concentration. Additionally, the type of Cu precursor also influenced the morphology of …


Modeling And Validation Of 4h-Sic Low Voltage Mosfets For Integrated Circuit Design, Shamim Ahmed May 2017

Modeling And Validation Of 4h-Sic Low Voltage Mosfets For Integrated Circuit Design, Shamim Ahmed

Graduate Theses and Dissertations

Silicon Carbide is a promising wide bandgap material and gradually becoming the first choice of semiconductor for high density and high efficiency power electronics in medium voltage range (500-1500V). SiC has also excellent thermal conductivity and the devices fabricated with the material can operate at high temperature (~ 400 ⁰C). Thus, a power electronic system built with SiC devices requires less cooling requirement and saves board space and cost. The high temperature applications of SiC material can also be extended to space exploration, oil and gas rigging, aerospace and geothermal energy systems for data acquisition, sensing and instrumentation and power …


Numerical Simulation Of Metallic Uranium Sintering, Bruce Berry May 2017

Numerical Simulation Of Metallic Uranium Sintering, Bruce Berry

Graduate Theses and Dissertations

Conventional ceramic oxide nuclear fuels are limited in their thermal and life-cycle properties. The desire to operate at higher burnups as is required by current utility economics has proven a formidable challenge for oxide fuel designs. Metallic formulations have superior thermal performance but are plagued by volumetric swelling due to fission gas buildup. In this study, we consider a number of specific microstructure configurations that have been experimentally shown to exhibit considerable resistance to porosity loss. Specifically, a void sizing that is bimodally distributed was shown to resist early pore loss and could provide collection sites for fission gas buildup. …


Development Of An Oxygen Saturation Monitoring System By Embedded Electronics, Manikandan Venkatesan Gomathy May 2017

Development Of An Oxygen Saturation Monitoring System By Embedded Electronics, Manikandan Venkatesan Gomathy

Graduate Theses and Dissertations

Measuring Oxygenation of blood (SaO2) plays a vital role in patient’s health monitoring. This is often measured by pulse oximeter, which is standard measure during anesthesia, asthma, operative and post-operative recoveries. Despite all, monitoring Oxygen level is necessary for infants with respiratory problems, old people, and pregnant women and in other critical situations.

This paper discusses the process of calculating the level of oxygen in blood and heart-rate detection using a non-invasive photo plethysmography also called as pulsoximeter using the MSP430FG437 microcontroller (MCU). The probe uses infrared lights to measure and should be in physical contact with any peripheral points …


Investigation Of Fes2 Nanoparticles For Use In Optoelectronic And Thermoelectric Applications, Rick Tefal Eyi Nkoghe May 2017

Investigation Of Fes2 Nanoparticles For Use In Optoelectronic And Thermoelectric Applications, Rick Tefal Eyi Nkoghe

Graduate Theses and Dissertations

Iron pyrite (FeS2) is the most abundant sulfide material on earth. This material has been widely investigated by researchers because of its optical properties. However, it has been difficult to produce High efficiency FeS2 based solar cells. This is due to many different impurities that arise when making the materials. The ability to synthesize pure pyrite FeS2 material is therefore critical for applications.

Pure Iron pyrite nanocrystals were synthesized using hot injection by mixing sulfur with an iron precursor in the presence of an amine. To improve the stability, shorter ligands replaced the native amines ligands. The stability of the …


Temporal Evaluation Of Corn Respiration Rates Using Pressure Sensors, Gagandeep Singh Ubhi May 2017

Temporal Evaluation Of Corn Respiration Rates Using Pressure Sensors, Gagandeep Singh Ubhi

Graduate Theses and Dissertations

High respiration rate of a grain indicates faster degradation of its dry matter. Proper grain management requires chronological and precise measurements of carbon dioxide evolved from grain respiration during the postharvest storage duration. Therefore the main goal of this research was to develop a new technique that evaluates temporal corn respiration rate using pressure sensors. It was based on measuring pressure drop associated with the grain respiration in a closed container and using it to calculate the grain respiration rates.

Dry corn (Zea Mays L.) was procured from a local farmer and stored at 4ºC. Corn rewetting technique was applied …


Linear Quadratic Optimal Control For A Cascaded Converters-Based Microgrid, Amlam Niragire May 2017

Linear Quadratic Optimal Control For A Cascaded Converters-Based Microgrid, Amlam Niragire

Graduate Theses and Dissertations

There is a constant transformation of the electric grid due to an ongoing interest in the deployment of renewable energy resources and electric microgrid formation. This transformation, though advantageous in many ways, poses great challenges for the energy industry and there must be a constant improvement in modeling, simulation, analysis and control techniques in order to characterize and optimize the system design and operation. In this light, the scope of this thesis is focused on developing a linear model, analyzing the stability and designing an optimal linear quadratic regulator (LQR) for a microgrid system. The microgrid system used is inspired …


Power Efficient High Temperature Asynchronous Microcontroller Design, Nathan William Kuhns May 2017

Power Efficient High Temperature Asynchronous Microcontroller Design, Nathan William Kuhns

Graduate Theses and Dissertations

There is an increasing demand for dependable and efficient digital circuitry capable of operating in high temperature environments. Extreme temperatures have adverse effects on traditional silicon synchronous systems because of the changes in delay and setup and hold times caused by the variances in each device’s threshold voltage. This dissertation focuses on the design of the major functionality of an asynchronous 8051 microcontroller in Raytheon’s high temperature Silicon Carbide process, rated for operation over 300ºC. The microcontroller is designed in NULL Convention Logic, for which the traditional bus architecture used for data transfer would consume a large amount of power. …


Applications Of Krylov Subspace And Balanced Truncation Model Order Reduction In Power Systems, Sebastian Emanuel Garrido May 2017

Applications Of Krylov Subspace And Balanced Truncation Model Order Reduction In Power Systems, Sebastian Emanuel Garrido

Graduate Theses and Dissertations

Dynamic representations of power systems usually result in the order of hundreds or even thousands of buses. Therefore, reduction of these dynamic representations is convenient. Two applications of model order reduction in power systems are discussed in this thesis. First, Krylov subspace-based method is applied to the IEEE-123 Node Test Feeder in the context of distribution-level power systems simulation. Second, a Balanced Truncation-based model reduction is implemented in the 3-Machine 9-Bus system for designing a power system controller in the context of generation- and transmission-level power systems.

First, for the IEEE-123 Node Test Feeder, a two-sided Arnoldi algorithm is proposed …


Sensitivity Of Diffuse Reflectance Spectroscopy To Dose- And Depth-Dependent Changes In Tumor Oxygenation After Radiation Therapy, Daria Semeniak May 2017

Sensitivity Of Diffuse Reflectance Spectroscopy To Dose- And Depth-Dependent Changes In Tumor Oxygenation After Radiation Therapy, Daria Semeniak

Graduate Theses and Dissertations

Along with chemotherapy, immunotherapy, and surgery, radiotherapy is one of the most common treatments used against cancer. Around 50% of all cancer patients undergo radiation therapy. While for some patients radiotherapy works efficiently and lead to a complete cancer disappearance, for others treatment outcome may be less favorable due to radioresistance processes happening within a tumor on the molecular level. Radioresistance remains a big challenge for modern oncology. The ability to identify radioresistance at the early stage of radiotherapy would help physicians to improve therapy efficiency. At the current moment, despite the rapid progress in cancer understanding and diagnostic modalities, …


Development Of A One Pass Microwave Heating Technology For Rice Drying And Decontamination, Deandrae Lynette Smith May 2017

Development Of A One Pass Microwave Heating Technology For Rice Drying And Decontamination, Deandrae Lynette Smith

Graduate Theses and Dissertations

An industrial microwave (MW) system operating at 915 MHz frequency was used to dry high moisture content (MC) (23% to 24% wet basis) medium-grain rough rice samples (cv. Jupiter). The rice beds were contained in a modified tray that accommodated up to 9 kg of rice separated by thin fiberglass mesh in 3 kg increments. Each layer of rice was fitted with fiber optic sensors connected to a real time data logger during MW treatments. It was determined that drying rice to a MC of 14% to 16% was feasible with the application of MW specific energy at 600 kJ/kg-grain …


Short-Circuit Protection For Low-Voltage Dc Distribution Systems Based On Solid-State Circuit Breakers, Sharthak Munasib May 2017

Short-Circuit Protection For Low-Voltage Dc Distribution Systems Based On Solid-State Circuit Breakers, Sharthak Munasib

Graduate Theses and Dissertations

Proper short-circuit protection in dc distribution systems has provided an austere challenge to researchers as the development of commercially-viable equipment providing fast operation, coordination and reliability still continues. The objective of this thesis is to analyze issues associated with short-circuit protection of low-voltage dc (LVDC) distribution systems and propose a short-circuit protection methodology based on solid-state circuit breakers (SSCBs) that provides fault-current limiting (FCL). Simulation results for a simplified notional 1-kVdc distribution system, performed in MATLAB/SIMULINKTM, would be presented to illustrate that SSCB solutions based on reverse-blocking integrated gate-commutated thyristors (RB-IGCT) are feasible for low-voltage dc distribution systems but requires …


Molecular Dynamics Simulations Of Dna-Functionalized Nanoparticle Building Blocks On Gpus, Tyler Landon Fochtman May 2017

Molecular Dynamics Simulations Of Dna-Functionalized Nanoparticle Building Blocks On Gpus, Tyler Landon Fochtman

Graduate Theses and Dissertations

This thesis discusses massively parallel molecular dynamics simulations of nBLOCKs using graphical processing units. nBLOCKs are nanoscale building blocks composed of gold nanoparticles functionalized with single-stranded DNA molecules. To explore greater simulation time scales we implement our nBLOCK computational model as an extension to the coarse grain molecular simulator oxDNA. oxDNA is parameterized to match the thermodynamics of DNA strand hybridization as well as the mechanics of single stranded DNA and double stranded DNA. In addition to an in-depth review of our implementation details we also provide results of the model validation and performance tests. These validation and performance tests …


A Hybrid Partially Reconfigurable Overlay Supporting Just-In-Time Assembly Of Custom Accelerators On Fpgas, Zeyad Tariq Aklah May 2017

A Hybrid Partially Reconfigurable Overlay Supporting Just-In-Time Assembly Of Custom Accelerators On Fpgas, Zeyad Tariq Aklah

Graduate Theses and Dissertations

The state of the art in design and development flows for FPGAs are not sufficiently mature to allow programmers to implement their applications through traditional software development flows. The stipulation of synthesis as well as the requirement of background knowledge on the FPGAs' low-level physical hardware structure are major challenges that prevent programmers from using FPGAs. The reconfigurable computing community is seeking solutions to raise the level of design abstraction at which programmers must operate, and move the synthesis process out of the programmers' path through the use of overlays. A recent approach, Just-In-Time Assembly (JITA), was proposed that enables …


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin Jan 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Graduate Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was …


Influence Of Concrete Compressive Strength On Transfer And Development Lengths Of Prestressed Concrete, Alberto Teodoro Ramirez-Garcia Dec 2016

Influence Of Concrete Compressive Strength On Transfer And Development Lengths Of Prestressed Concrete, Alberto Teodoro Ramirez-Garcia

Graduate Theses and Dissertations

This research examines the relationship between concrete compressive strength and strand bond. The goal of this research was to develop an equation that relates strand bond to concrete compressive strength at strand release (approximately 1 day of age) and at 28 days of age, and those equations are presented in this investigation. Strand bond is assessed by measuring the transfer length and development length for prestressed beams cast in the laboratory. In the U.S., strand bond is predicted using transfer length and development length equations provided by the American Concrete Institute (ACI-318) Building Code and American Association of State and …


Identifying Damage, Predicting Expansion, And Determining The Effectiveness Of Sealers On Concrete Affected By Alkali-Silica Reaction And Freeze-Thaw, Matthew Caleb Waidner Dec 2016

Identifying Damage, Predicting Expansion, And Determining The Effectiveness Of Sealers On Concrete Affected By Alkali-Silica Reaction And Freeze-Thaw, Matthew Caleb Waidner

Graduate Theses and Dissertations

Premature cracking of the barrier wall and pavement on I-49 south of Fayetteville, Arkansas due to a combination of Alkali-Silica Reaction (ASR) and freeze-thaw has led to ASR and freeze-thaw research at the University of Arkansas. Potential for further expansion (PFET), Damage Rating Index (DRI), and mitigation of freeze-thaw and ASR with sealers testing and results are contained herein. PFET results indicated that the pavement will not continue to expand from ASR. With other interstate pavements deteriorating prematurely throughout Arkansas, DRI has shown that most are damaged not only by ASR but by freeze-thaw too. Recommendations for freeze-thaw’s inclusion into …


Membrane Chromatography For Bioseparations: Ligand Design And Optimization, Zizhao Liu Dec 2016

Membrane Chromatography For Bioseparations: Ligand Design And Optimization, Zizhao Liu

Graduate Theses and Dissertations

Membrane chromatography, or membrane adsorber, represents an attractive alternative to conventional packed bed chromatography used in downstream processing. Membrane chromatography has many advantages, including high productivity, low buffer consumption and ease to scale up. This doctoral dissertation focuses on developing novel polymeric ligands for protein separations using membrane chromatography. Atom transfer radical polymerization (ATRP), known as a controlled radical polymerization technique, has been used to control the architecture of grafted polymeric ligands. The center theme of this dissertation is to develop new polymeric ligands and investigate how the polymer’s property (e.g. flexibility, hydrophobicity) and architecture (e.g. chain density, chain length) …