Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 104

Full-Text Articles in Engineering

Design And Synthesis Of Novel Nanometallic Catalysts And Electrode Materials For Green Fuel Cells, Jing Zhang May 2018

Design And Synthesis Of Novel Nanometallic Catalysts And Electrode Materials For Green Fuel Cells, Jing Zhang

Graduate Dissertations and Theses

The United Nations formally adopted 17 sustainable development goals (SDGs) at its 2015 summit. Many of these goals addressed issues such poverty, hunger, health, education, climate-change, gender equality, water, sanitation, energy, urbanization, environment and social justice. The seventh SDG seeks to ensure access to affordable, reliable, sustainable and modern energy for all. So among all renewable forms of energy, fuel cells with high efficiency have attracted a lot of attention recently. In particular, the direct ethanol fuel cells (DEFCs) and microbial fuel cells (MFCs) are significant due to their green fuel, less waste generated and environmental friendliness. Hence the overall …


Computer Simulation Of Pore Migration Due To Temperature Gradients In Nuclear Oxide Fuel, Ian Wayne Vance May 2017

Computer Simulation Of Pore Migration Due To Temperature Gradients In Nuclear Oxide Fuel, Ian Wayne Vance

Graduate Theses and Dissertations

A phase-field simulation model is being presented that captures the thermal-gradient-driven migration of pores in oxide fuel associated with fuel restructuring. The model utilizes a Cahn-Hilliard equation supplemented with an advection term to describe the vapor transport of fuel material through the pore interior due to gradients in vapor pressure. In addition, the model also captures changes in a migrating pores’ morphology. Simulations demonstrate that the model successfully predicts pore migration towards the hottest portion of the fuel, the centerline. The simulations also demonstrate changes in pore shape that are in agreement with previous experimental observations. Initially isotropic pores are …


Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani May 2017

Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani

Graduate Theses and Dissertations

The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, <100>, <110>, <111> and <321>, and dislocation density behind the shock wave …


Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Graduate Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear frequency …


Investigation Of Fes2 Nanoparticles For Use In Optoelectronic And Thermoelectric Applications, Rick Tefal Eyi Nkoghe May 2017

Investigation Of Fes2 Nanoparticles For Use In Optoelectronic And Thermoelectric Applications, Rick Tefal Eyi Nkoghe

Graduate Theses and Dissertations

Iron pyrite (FeS2) is the most abundant sulfide material on earth. This material has been widely investigated by researchers because of its optical properties. However, it has been difficult to produce High efficiency FeS2 based solar cells. This is due to many different impurities that arise when making the materials. The ability to synthesize pure pyrite FeS2 material is therefore critical for applications.

Pure Iron pyrite nanocrystals were synthesized using hot injection by mixing sulfur with an iron precursor in the presence of an amine. To improve the stability, shorter ligands replaced the native amines ligands. The stability of the …


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin Jan 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Graduate Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was …


Understanding The Intrinsic Electrochemistry Of Ni-Rich Layered Cathodes, Shawn W. Sallis Jan 2017

Understanding The Intrinsic Electrochemistry Of Ni-Rich Layered Cathodes, Shawn W. Sallis

Graduate Dissertations and Theses

The demand for energy is continually increasing overtime and the key to meeting future demand in a sustainable way is with energy storage. Li-ion batteries employing layered transition metal oxide cathodes are one of the most technologically important energy storage technologies. However, current Li-ion batteries are unable to access their full theoretical capacity and suffer from performance limiting degradation over time partially originating from the cathode and partially from the interface with the electrolyte. Understanding the fundamental limitations of layered transition metal oxide cathodes requires a complete understanding of the surface and bulk of the materials in their most delithiated …


Influence Of Concrete Compressive Strength On Transfer And Development Lengths Of Prestressed Concrete, Alberto Teodoro Ramirez-Garcia Dec 2016

Influence Of Concrete Compressive Strength On Transfer And Development Lengths Of Prestressed Concrete, Alberto Teodoro Ramirez-Garcia

Graduate Theses and Dissertations

This research examines the relationship between concrete compressive strength and strand bond. The goal of this research was to develop an equation that relates strand bond to concrete compressive strength at strand release (approximately 1 day of age) and at 28 days of age, and those equations are presented in this investigation. Strand bond is assessed by measuring the transfer length and development length for prestressed beams cast in the laboratory. In the U.S., strand bond is predicted using transfer length and development length equations provided by the American Concrete Institute (ACI-318) Building Code and American Association of State and …


Thermomechanical Properties Of Novel Lanthanum Zirconate Based Thermal Barrier Coatings - An Integrated Experimental And Modeling Study, Xingye Guo Dec 2016

Thermomechanical Properties Of Novel Lanthanum Zirconate Based Thermal Barrier Coatings - An Integrated Experimental And Modeling Study, Xingye Guo

Open Access Dissertations

Thermal barrier coatings (TBCs) are refractory materials deposited on gas turbine components, which provide thermal protection for metallic components at operating conditions. The current state-of-art TBC material is yttria-stabilized zirconia (YSZ), whose service temperature is limited to 1200 celsius, due to sintering and phase transition at higher temperatures. In comparison, lanthanum zirconate (La2Zr2O7, LZ) has become a promising candidate material for TBCs due to its lower thermal conductivity and higher phase stability compared to YSZ.

The primary objective of this thesis is to design a novel robust LZ-based TBC system suitable for applications beyond 1200 celsius. Due to LZ’s low …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


Microstructural Evolution During The Homogenization Heat Treatment Of 6xxx And 7xxx Aluminum Alloys, Pikee Priya Dec 2016

Microstructural Evolution During The Homogenization Heat Treatment Of 6xxx And 7xxx Aluminum Alloys, Pikee Priya

Open Access Dissertations

Homogenization heat treatment of as-cast billets is an important step in the processing of aluminum extrusions. Microstructural evolution during homogenization involves elimination of the eutectic morphology by spheroidisation of the interdendritic phases, minimization of the microsegregation across the grains through diffusion, dissolution of the low-melting phases, which enhances the surface finish of the extrusions, and precipitation of nano-sized dispersoids (for Cr-, Zr-, Mn-, Sc-containing alloys), which inhibit grain boundary motion to prevent recrystallization. Post-homogenization cooling reprecipitates some of the phases, changing the flow stress required for subsequent extrusion. These precipitates, however, are deleterious for the mechanical properties of the alloy …


Size Scaling Of Strength And Toughness For 3d Printed Polymer Specimens, Darren Thomas Bell Dec 2016

Size Scaling Of Strength And Toughness For 3d Printed Polymer Specimens, Darren Thomas Bell

Open Access Theses

To find material systems that offer low density and high strength, stiffness or toughness, hierarchically designed material systems have provided a promising research area. This thesis lays the groundwork for designing efficient micro-architectured material systems by characterizing size effects for 3d printed polymer parts. Two methods were used to analyze data from 3-point bend tests for specimens of varying size: the load-separation method was used for finding the point of crack growth initiation and Bazant’s method was used to find shape independent strength at failure. The strength values were used as inputs for finding size independent material constants within a …


Design Of Nitroxide-Based Radical Polymer Materials For Electronic Applications, Martha E. Hay Dec 2016

Design Of Nitroxide-Based Radical Polymer Materials For Electronic Applications, Martha E. Hay

Open Access Theses

Radical polymers represent a new class of organic electronic materials that rely on an oxidation-reduction (redox) reaction to transport charge. That is, stable radical sites pendant to the polymer backbone communicate electronically through a rapid oxidation-reduction reaction. This redox mechanism has previously been established as effective for charge-storage applications (e.g., secondary batteries). When applied in the solid state, radical polymers demonstrate electrical conductivity on par with that of first-generation conjugated polymer electronic materials. This initial success has prompted interest in developing design rules for radical polymers. Specifically, this thesis explores the impact of radical density in a polymer …


Degradation Of High Performance Polymeric Fibers: Effects Of Sonication, Humidity And Temperature On Poly (P-Phenylene Terephthalamide) Fibers, Nelyan Lopez-Perez Dec 2016

Degradation Of High Performance Polymeric Fibers: Effects Of Sonication, Humidity And Temperature On Poly (P-Phenylene Terephthalamide) Fibers, Nelyan Lopez-Perez

Open Access Theses

High performance fibers are characterized by properties such as high strength and resistance to chemicals and heat. Due to their outstanding properties, they are used on applications under harsh environments that can degrade and decrease their performance. Fiber degradation due to different chemical and mechanical factors, is a process that begins at a microstructural level. Changes in the polymer’s chemical or physical structure can alter their mechanical properties. Knowledge of the structure-properties relationship and the effects of environmental chemical and physical factors over time, is crucial for the improvement and development of high performance fibers.

In this study ballistic fibers …


Linking Nanoscale Mechanical Behavior To Bulk Physical Properties And Phenomena Of Energetic Materials, Matthew R. Taw Dec 2016

Linking Nanoscale Mechanical Behavior To Bulk Physical Properties And Phenomena Of Energetic Materials, Matthew R. Taw

Open Access Theses

The hardness and reduced modulus of aspirin, RDX, HMX, TATB, FOX-7, ADAAF, and TNT/CL-20 were experimentally measured with nanoindentation. These values are reported for the first time using as-received micron sized crystals of energetic materials with no additional mechanical processing. The results for TATB, ADAAF, and TNT/CL-20 are the first of their kind, while comparisons to previous nanoindentation studies on large, carefully grown single crystals of the other energetic materials show that mechanical properties of the larger crystals are comparable to crystals in the condition they are practically used. Measurements on aspirin demonstrate the variation that can occur between nanoindentation …


The Influence Of Alkalinity Of Portland Cement On The Absorption Characteristics Of Superabsorbent Polymers (Sap) For Use In Internally Cured Concrete, Juan D. Tabares Tamayo Dec 2016

The Influence Of Alkalinity Of Portland Cement On The Absorption Characteristics Of Superabsorbent Polymers (Sap) For Use In Internally Cured Concrete, Juan D. Tabares Tamayo

Open Access Theses

The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking.

This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions …


Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares Dec 2016

Energy Localization And Heat Generation In Composite Energetic Systems Under High-Frequency Mechanical Excitation, Jesus O. Mares

Open Access Dissertations

In this work, the ability to use high frequency mechanical excitation to generate significant heating within plastic bonded explosives, as well as single energetic particles embedded within a viscoelastic binder, is studied. In this work, the fundamental mechanisms associated with the conversion of high-frequency mechanical excitation to heat as applied to these composite energetic systems are thoroughly investigated.

High-frequency contact excitation has been used to generate a significant amount of heat within samples of PBX 9501 and representative inert mock materials. Surface temperature rises on the order of 10 °C were observed at certain frequencies over a range from 50 …


Bridge Maintenance To Enhance Corrosion Resistance And Performance Of Steel Girder Bridges, Luis M. Moran Yanez Dec 2016

Bridge Maintenance To Enhance Corrosion Resistance And Performance Of Steel Girder Bridges, Luis M. Moran Yanez

Open Access Dissertations

The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. …


Mechanism Of Shot Peening Enhancement For The Fatigue Performance Of Aa7050-T7451, Daniel James Chadwick Dec 2016

Mechanism Of Shot Peening Enhancement For The Fatigue Performance Of Aa7050-T7451, Daniel James Chadwick

Open Access Theses

Shot peening is a dynamic cold working process involving the impingement of peening media onto a substrate surface. Shot peening is commonly employed as a surface treatment technique within the aerospace industry during manufacturing, in order to improve fatigue performance of structural components. The compressive residual stress induced during shot peening is understood to result in fatigue crack growth retardation, improving the performance of shot peened components. However, shot peening is a compromise between the benefit of inducing a compressive residual stress and causing detrimental surface damage. Due to the relatively soft nature of AA7050-T7451, shot peening can result in …


Passive Thermal Management Using Phase Change Materials, Yash Yogesh Ganatra Dec 2016

Passive Thermal Management Using Phase Change Materials, Yash Yogesh Ganatra

Open Access Theses

The trend of enhanced functionality and reducing thickness of mobile devices has led to a rapid increase in power density and a potential thermal bottleneck since thermal limits of components remain unchanged. Active cooling mechanisms are not feasible due to size, weight and cost constraints. This work explores the feasibility of a passive cooling system based on Phase Change Materials (PCMs) for thermal management of mobile devices. PCMs stabilize temperatures due to the latent heat of phase change thus increasing the operating time of the device before threshold temperatures are exceeded. The primary contribution of this work is the identification …


The Effect Of Process Parameters And Surface Condition On Bond Strength Between Additively Manufactured Components And Polymer Substrates, Bharat Bhushan Chivukula Dec 2016

The Effect Of Process Parameters And Surface Condition On Bond Strength Between Additively Manufactured Components And Polymer Substrates, Bharat Bhushan Chivukula

Graduate Theses and Dissertations

Additive patching is a process in which printers with multiple axes deposit molten material onto a pre-defined surface to form a bond. Studying the effect of surface roughness and process parameters selected for printing auxiliary part on the bond helps in improving the strength of the final component. Particularly, the influence of surface roughness, as established by adhesion theory, has not been evaluated in the framework of additive manufacturing (AM). A full factorial design of experiments with five replications was conducted on two levels and three factors, viz., layer thickness, surface roughness, and raster angle to examine the underlying effects …


Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris Dec 2016

Investigation Of The Optical Properties Of Pbse/Pbx Nanocrystals For Photodetector Applications, Haley Ann Morris

Graduate Theses and Dissertations

Lead selenide and lead selenide/lead sulfide core/shell nanocrystals were investigated for use in near infrared photodetectors. A colloidal synthesis method was used for both the core and core/shell configurations. The lead sulfide shell was examined in order to mitigate oxidation of the nanoparticle surface. Absorbance and photoluminescence spectra were measured at room temperature and 77 K, respectively. Transmission electron microscopy images were also obtained to confirm crystallography and size. Bulk lead selenide was simulated in WIEN2k utilizing the linear-augmented plane wave method of solving density functional theory to better understand the electronic structure of PbSe. The crystal structure, electron density, …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill Dec 2016

Fabrication Of Infrared Photodetectors Utilizing Lead Selenide Nanocrystals, Justin Anthony Hill

Graduate Theses and Dissertations

Colloidal lead selenide and lead selenide / lead sulfide core/shell nanocrystals were grown using a wet chemical synthesis procedure. Absorbance and photoluminescence measurements were made to verify the quality of the produced nanocrystals. Absorbance spectra were measured at room temperature, while photoluminescence spectra were measured at 77 K. Organic ligands were exchanged for shorter ligands in order to increase the conductivity of the nanocrystals. Absorption and PL spectra for both core and core/shell nanocrystals were compared. Interdigital photodetector devices with varying channel widths were fabricated by depositing gold onto a glass substrate. Lead selenide nanocrystals were deposited onto these metallic …


Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman Dec 2016

Synthesis, Characterization, And Fabrication Of All Inorganic Quantum Dot Leds, Haider Baqer Salman

Graduate Theses and Dissertations

Quantum Dot LEDs with all inorganic materials are investigated in this thesis. The research was motivated by the potential disruptive technology of core shell quantum dots in lighting and display applications. These devices consisted of three main layers: hole transport layer (HTL), electron transport layer (ETL), and emissive layer where the emission of photons occurs. The latter part was formed of CdSe / ZnS core-shell quantum dots, which were synthesized following hot injection method. The ETL and the HTL were formed of zinc oxide nanocrystals and nickel oxide, respectively. Motivated by the low cost synthesis and deposition, NiO and ZnO …


Modeling Fluid Interactions With The Rigid Mush In Alloy Solidification, Alexander J. Plotkowski Aug 2016

Modeling Fluid Interactions With The Rigid Mush In Alloy Solidification, Alexander J. Plotkowski

Open Access Dissertations

Macrosegregation is a casting defect characterized by long range composition differences on the length scale of the ingot. These variations in local composition can lead to the development of unwanted phases that are detrimental to mechanical properties. Unlike microsegregation, in which compositions vary over the length scale of the dendrite arms, macrosegregation cannot be removed by subsequent heat treatment, and so it is critical to understand its development during solidification processing. Due to the complex nature of the governing physical phenomena, many researchers have turned to numerical simulations for these predictions, but properly modeling alloy solidification presents a variety of …


Fabrication And Characterization Of Cellulose Nanocrystal Enhanced Sustainable Polymer Nanocomposites Through Surface Chemistry And Processing, Shane X. Peng Aug 2016

Fabrication And Characterization Of Cellulose Nanocrystal Enhanced Sustainable Polymer Nanocomposites Through Surface Chemistry And Processing, Shane X. Peng

Open Access Dissertations

Cellulose nanocrystals (CNCs) belong to a class of cellulose based nanomaterials that are extracted from renewable and sustainable sources and have excellent mechanical and thermal properties. While applications for CNCs have been expanding, one of the challenges of utilizing CNCs is to overcome their low dispersibility in hydrophobic polymers. In the present work, several approaches are utilized to improve the interfacial compatibility and overall performance of CNC/epoxy and CNC/polyamide nanocomposite.

For a two-part epoxy system, a novel approach was taken to disperse CNC in epoxy matrix by pre-formulating CNC into the hardeners. Three types of hardeners were evaluated for their …


Nanoparticle-Based Electrochemical Sensors For The Detection Of Lactate And Hydrogen Peroxide, Aytekin Uzunoglu Aug 2016

Nanoparticle-Based Electrochemical Sensors For The Detection Of Lactate And Hydrogen Peroxide, Aytekin Uzunoglu

Open Access Dissertations

In the present study, electrochemical sensors for the detection of lactate and hydrogen peroxide were constructed by exploiting the physicochemical properties of metal ad metal oxide nanoparticles. This study can be divided into two main sections. While chapter 2, 3, and 4 report on the construction of electrochemical lactate biosensors using CeO2 and CeO2-based mixed metal oxide nanoparticles, chapter 5 and 6 show the development of electrochemical hydrogen peroxide sensors by the decoration of the electrode surface with palladium-based nanoparticles. First generation oxidase enzyme-based sensors suffer from oxygen dependency which results in errors in the response current of the sensors …


Additive Manufacturing Of Carbon Fiber-Reinforced Thermoplastic Composites, Nicholas M. Denardo Aug 2016

Additive Manufacturing Of Carbon Fiber-Reinforced Thermoplastic Composites, Nicholas M. Denardo

Open Access Theses

Additive manufacturing, or 3D printing, encompasses manufacturing processes that construct a geometry by depositing or solidifying material only where it is needed in the absence of a mold. The ability to manufacture complex geometries on demand directly from a digital file, as well as the decreasing equipment costs due to increased competition in the market, have resulted in the AM industry experiencing rapid growth in the past decade. Many companies have emerged with novel technologies well suited to improve products and/or save costs in various industries.

Until recently, the applications of polymer additive manufacturing have been mainly limited to prototyping. …


Solution Based Processing Of Garnet Type Oxides For Optimized Lithium-Ion Transport, Derek K. W. Schwanz Aug 2016

Solution Based Processing Of Garnet Type Oxides For Optimized Lithium-Ion Transport, Derek K. W. Schwanz

Open Access Theses

Current lithium based portable electrochemical storage devices are limited by the inherent instability and volatility of conventional electrolytes materials. Ceramic materials show much promise for use in advanced lithium based battery systems due to their inhibition of dendritic growth and high thermal and chemical stability. The main drawback of solid materials is their low ionic conductivity, relying on lattice hopping to transport ions between electrodes during cycling. Garnet type oxides, specifically of the base compositions Li7La3Zr2O12 and Li5L a3Bi2O12 have been synthesized through Pechini method solution based processing by the dissolution of reagent salts into nitric acid and creation of …