Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller May 2018

Fluorescence Guided Tumor Imaging: Foundations For Translational Applications, Jessica P. Miller

McKelvey School of Engineering Theses & Dissertations

Optical imaging for medical applications is a growing field, and it has the potential to improve medical outcomes through its increased sensitivity and specificity, lower cost, and small instrumentation footprint as compared to other imaging modalities. The method holds great promise, ranging from direct clinical use as a diagnostic or therapeutic tool, to pre-clinical applications for increased understanding of pathology. Additionally, optical imaging uses non-ionizing radiation which is safe for patients, so it can be used for repeated imaging procedures to monitor therapy, guide treatment, and provide real-time feedback. The versatile features of fluorescence-based optical imaging make it suited for …


Experimental And Model-Based Terahertz Imaging And Spectroscopy For Mice, Human, And Phantom Breast Cancer Tissues, Tyler Bowman May 2018

Experimental And Model-Based Terahertz Imaging And Spectroscopy For Mice, Human, And Phantom Breast Cancer Tissues, Tyler Bowman

Graduate Theses and Dissertations

The goal of this work is to investigate terahertz technology for assessing the surgical margins of breast tumors through electromagnetic modeling and terahertz experiments. The measurements were conducted using a pulsed terahertz system that provides time and frequency domain signals. Three types of breast tissues were investigated in this work. The first was formalin-fixed, paraffin-embedded tissues from human infiltrating ductal and lobular carcinomas. The second was human tumors excised within 24-hours of lumpectomy or mastectomy surgeries. The third was xenograft and transgenic mice breast cancer tumors grown in a controlled laboratory environment to achieve more data for statistical analysis.

Experimental …


Radio Tomographic Imaging Using A Modified Maximum Likelihood Estimator For Image Reconstruction In Various Environments, Antwon R. Gallagher Mar 2018

Radio Tomographic Imaging Using A Modified Maximum Likelihood Estimator For Image Reconstruction In Various Environments, Antwon R. Gallagher

Theses and Dissertations

Radio Tomographic Imaging (RTI) is an emerging Device-Free Passive Localization (DFPL) technology. Radio Tomographic Imaging (RTI) involves using a set of small low cost wireless transceivers to create a Wireless Sensor Network (WSN) around an Area of Interest (AoI). Furthermore, the Received Signal Strength (RSS) between transceiver pairs is utilized to reconstruct an image from the signal attenuation caused by an object disrupting the links. This image can then be utilized for multiple applications ranging from localization to target detection and tracking. This enhances the importance of image resolution in order to capture the actual size of the objects as …


Impact Of Near-Field-To-Far-Field Transformation On Sar Images Formed In An Indoor Non-Anechoic Environment, Jacob D. Compaleo Jan 2018

Impact Of Near-Field-To-Far-Field Transformation On Sar Images Formed In An Indoor Non-Anechoic Environment, Jacob D. Compaleo

Browse all Theses and Dissertations

This work investigates the impact of the near-field-to-far-field transformation (NFFFT) algorithm on phase history measurement collections completed in the Sensors and Signals Exploitation Laboratory (SSEL). SSEL is an indoor non-anechoic environ- ment that is at risk to some measurement interferences such as multiple bounces. Complete 360-degree phase history measurements of scale model aircraft are con- ducted at varying range values within the near-field limit. These measurements are calibrated with the Mie series scattering solution for a sphere. After calibration, the measurements are transformed using the NFFFT, with radar cross-section (RCS) estimated. RCS of the transformed data is compared with the …


Leveraging 3d Models For Sar-Based Navigation In Gps-Denied Environments, Zachary A. Reid Jan 2018

Leveraging 3d Models For Sar-Based Navigation In Gps-Denied Environments, Zachary A. Reid

Browse all Theses and Dissertations

This thesis considers the use of synthetic aperture radar (SAR) to provide absolute platform position information in scenarios where GPS signals may be degraded, jammed, or spoofed. Two algorithms are presented, and both leverage known 3D ground structure in an area of interest, e.g. provided by LIDAR data, to provide georeferenced position information to airborne SAR platforms. The first approach is based on the wide-aperture layover properties of elevated reflectors, while the second approach is based on correlating backprojected imagery with digital elevation imagery. Both of these approaches constitute the system we have designated: SARNAV. Building on 3D backprojection, localization …


Optical Mapping Of Cardiac Electromechanics, Hanyu Zhang Jan 2018

Optical Mapping Of Cardiac Electromechanics, Hanyu Zhang

All ETDs from UAB

Sudden cardiac arrest is a leading cause of death in the world. One of the common causes of sudden cardiac arrest is acute regional ischemia due to coronary occlusion. However, the mechanism of arrhythmia onset in this setting is still unclear. Previous stud-ies suggest that abnormal mechanical stretch during acute regional ischemia may play a role in initiating arrhythmia through triggering ectopic electrical activation. Optical map-ping has been widely used in cardiac electrophysiological research in the past decades. Compared with conventional electrical mapping techniques, optical mapping offers a number of advantages. But a major limitation of optical mapping is that …


Development Of Low Frequency Electron Paramagnetic Resonance Methods And Instrumentation For Biological Applications, Laura A. Buchanan Jan 2018

Development Of Low Frequency Electron Paramagnetic Resonance Methods And Instrumentation For Biological Applications, Laura A. Buchanan

Electronic Theses and Dissertations

EPR is a powerful biophysical tool that can be used to measure tumor physiology. With the addition of magnetic field gradients, the spectral properties of paramagnetic species can be mapped. To facilitate EPR imaging, methods and instrumentation at frequencies between 250 MHz and 1 GHz were developed.

At low spin concentrations, the rapid scan background signal is often many times larger than the EPR signal of interest. To help remove the background contribution, a data acquisition procedure that takes advantage of a cross-loop resonator and bipolar power supplies was developed at 250 MHz. In this procedure, two scans are collected. …


Development Of A Capacitive Photocurrent Scanning Microscope With Carrier Depletion Super-Resolution., Austin Levi Carver Jan 2018

Development Of A Capacitive Photocurrent Scanning Microscope With Carrier Depletion Super-Resolution., Austin Levi Carver

Electronic Theses and Dissertations

This dissertation discusses the development and refinement of a new two-dimensional imaging technique, funded in part through a NSF MRI equipment development grant. Capacitive-Photocurrent (CPC) spectroscopy allows for the probing of samples without the requirement of free-carrier collection. The CPC technique allows for the studying of various states within a material. With this electronic measurement technique, we developed a scanning technique, scanning-CPC, that provides two-dimensional material property images without requiring environments that must be high-vacuum, humidity-controlled, or temperature-controlled. This new technique also provides two-dimensional, electronic mapping without damaging samples. With this successful result, we then modified an existing resolution improving …